Cytochrome P450 oxidoreductase (POR) is a steroidogenic and drug-metabolizing enzyme. It helps in the NADPH dependent transfer of electrons to cytochrome P450 (CYP) enzymes for their biological activity. In this study, we employed integrative computational approaches to decipher the impact of proline to leucine missense mutation at position 384 (P384L) in the connecting/hinge domain region which is essential for the catalytic activity of POR. Analysis of protein stability using DUET, MUpro, CUPSAT, I-Mutant2.0, iStable and SAAFEC servers predicted that mutation might alter the structural stability of POR. The significant conformational changes induced by the mutation to the POR structure were analyzed by long-range molecular dynamics simulation. The results revealed that missense mutation decreased the conformational stability of POR as compared to wild type (WT). The PCA based FEL analysis described the mutant-specific conformational alterations and dominant motions essential for the biological activity of POR. The LIGPLOT interaction analysis showed the different binding architecture of FMN, FAD, and NADPH as a result of mutation. The increased number of hydrogen bonds in the FEL conformation of WT proved the strong binding of cofactors in the binding pocket as compared to the mutant. The porcupine plot analysis associated with cross-correlation analysis depicted the high-intensity flexible motion exhibited by functionally important FAD and NADPH binding domain regions. The computational findings unravel the impact of mutation at the structural level, which could be helpful in understanding the molecular mechanism of drug metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2020.107708 | DOI Listing |
Am J Hum Genet
January 2025
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, Irvine, Irvine, CA, USA.
Background: A complex, multicellular disease with genetic and immunological elements, Alzheimer's disease (AD) affects millions worldwide. There has been previous research linking AD to the missense variants ABI3-rs616338-T and PLCG2-rs72824905-G, and the altered expression of these genes has been shown to disrupt microglial function. In our understanding of AD risk and resilience, limited research has been conducted on how these variants affect microglial subtypes and states in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.
Background: We identified the missense variant Ser1038Cys (rs377155188) in the tetratricopeptide repeat domain 3 (TTC3) gene that segregate in a non-Hispanic white late onset Alzheimer disease (LOAD) family. This variant is predicted to be deleterious and extremely rare (MAF<0.01%).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Amsterdam UMC location VUmc, Amsterdam, Noord-holland, Netherlands.
Background: SORL1 encodes the retromer-associated receptor SORLA that functions in endosomal recycling. Rare variants in SORL1 have been associated with Alzheimer's disease (AD) and rare pathogenic variants are estimated to occur in up to 2.75% of early onset AD patients and in 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!