A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluating the resource allocation index as a potential fMRI-based biomarker for substance use disorder. | LitMetric

Evaluating the resource allocation index as a potential fMRI-based biomarker for substance use disorder.

Drug Alcohol Depend

Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK, 74136, United States; Department of Community Medicine, Oxley Health Sciences, The University of Tulsa, 1215 S. Boulder Ave, Tulsa, OK, 74119, United States; Department of Psychiatry, University of California, San Diego, United States. Electronic address:

Published: November 2020

Background: There is a lack of neuroscience-based biomarkers for the diagnosis, treatment and monitoring of individuals with substance use disorders (SUD). The resource allocation index (RAI), a measure of the interrelationship between salience, executive control and default-mode brain networks (SN, ECN, and DMN), has been proposed as one such biomarker. However, the RAI has yet to be extensively tested in SUD samples.

Methods: The present analysis compared RAI scores between individuals with stimulant and/or opioid use disorders (SUD; n = 139, abstinent 4-365 days) and healthy controls (HC; n = 56) who had completed resting-state functional magnetic resonance imaging (fMRI) scans within the context of the Tulsa 1000 cohort. First, we used independent component analysis (ICA) to identify the SN, ECN, and DMN and extract their time series data. Second, we used multiple permutations of automatically identified networks to compute RAI as reported in the fMRI literature.

Results: First, the RAI as a metric depended substantially on the approach that was used to define the network components. Second, regardless of the selection of networks, after controlling for multiple testing there was no difference in RAI scores between SUD and HC. Third, the RAI was not associated with any substance use-related self-report measures.

Conclusion: Taken together, these findings do not provide evidence that RAI can be used as an fMRI-derived biomarker for the severity or diagnosis of individuals with SUD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609625PMC
http://dx.doi.org/10.1016/j.drugalcdep.2020.108211DOI Listing

Publication Analysis

Top Keywords

resource allocation
8
disorders sud
8
rai
8
ecn dmn
8
rai scores
8
sud
5
evaluating resource
4
allocation potential
4
potential fmri-based
4
fmri-based biomarker
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!