Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the increased use of nanomaterials and increased exposure of humans to various nanomaterials, the potential health effects of nanomaterials cannot be ignored. The hepatotoxicity of cobalt nanoparticles (Nano-Co) is largely unknown and the underlying mechanisms remain obscure. The purpose of this study was to exam the hepatotoxicity induced by Nano-Co and its potential mechanisms. Our results showed that exposure of human fetal hepatocytes L02 to Nano-Co caused a dose- and a time-dependent cytotoxicity. Besides the generation of reactive oxygen species (ROS) and mitochondrial reactive oxygen species (mtROS), exposure to Nano-Co also caused activation of NOD-like receptor protein 3 (NLRP3) inflammasome in hepatocytes. After silencing NLRP3, one component of NLRP3 inflammasome, expression by siRNA strategy, we found that upregulation of NLRP3-related proteins was abolished in hepatocytes exposed to Nano-Co. Using antioxidants to scavenge ROS and mtROS, we demonstrated that Nano-Co-induced mtROS generation was related to Nano-Co-induced NLRP3 inflammasome activation. Our findings demonstrated that Nano-Co exposure may promote intracellular oxidative stress damage, and mtROS may mediate the activation of NLRP3 inflammasome in hepatocytes exposed to Nano-Co, suggesting an important role of ROS/NLRP3 pathway in Nano-Co-induced hepatotoxicity. These results provide scientific insights into the hepatotoxicity of Nano-Co and a basis for the prevention and treatment of Nano-Co-induced cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2020.104967 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!