Biocompatible drug delivery vehicles with sustained drug release property are valuable in cancer therapy and can reduce some of the side effects. Hence, to achieve the biocompatible system with sustained drug release behavior a new drug carrier was fabricated via in situ synthesis of MIL-53 (MIL = Materials of Institute Lavoisier) within the carboxymethylcellulose/graphene quantum dots matrix (CMC/GQDs) as a biological macromolecule based platform (MIL-53@CMC/GQDs). Fourier transform infrared (FT-IR), and X-ray diffraction (XRD) analysis revealed successful synthesis of MIL-53@CMC/GQDs. The mean pore diameter of MIL-53@CMC/GQDs obtained 18.66 nm. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) exhibited that MIL-53 is well distributed in hydrogel matrix. Doxorubicin (DOX) was loaded about 55.80% and 88.90% into the MIL-53 and MIL-53@CMC/GQDs, respectively. Drug release studies showed the pH-dependent DOX release behavior for DOX@MIL-53@CMC/GQDs. The cytotoxic assay approved the biocompatibility of MIL-53@CMC/GQDs against the human breast cancer cell line (MDA-MB 231). The fragmentation of nuclei and condensation of chromatin after treatment with DOX@MIL-53@CMC/GQDs displayed its capability in cancer treatment. Moreover, an arrest in sub-G1 of cell cycle after treatment with MIL-53@CMC/GQDs showed cell's apoptosis. The results conveyed a new concept that the MIL-53@CMC/GQDs could be proposed as a potential carrier for the delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.08.121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!