Lithium (Li) metal is the most promising negative electrode to be implemented in batteries for stationary and electric vehicle applications. For years, its use and subsequent industrialization were hampered because of the inhomogeneous Li ion reduction upon recharge onto Li metal leading to dendrite growth. The use of solid polymer electrolyte is a solution to mitigate dendrite growth. Li reduction leads typically to dense Li deposits, but the Li stripping and plating process remain nonuniform with local current heterogeneities. A precise characterization of the behavior of these heterogeneities during cycling is then essential to move toward an optimized negative electrode. In this work, we have developed a characterization method based on X-ray tomography applied to model Li symmetric cells to quantify and spatially probe the Li stripping/plating processes. Ante- and post-mortem cells are recut in smaller cells to allow a 1 μm voxel size resolution in a conventional laboratory scanner. The reconstructed cell volume is postprocessed to numerically reflatten the Li electrodes, allowing us a subsequent precise measurement of the electrode and electrolyte thicknesses and revealing local interface modifications. This in-depth analysis brings information about the location of heterogeneities and their impact on the electrode microstructure at both the electrode grains and grain boundaries. We show that the plating process (reduction) induces more pronounced heterogeneities compared to the stripping (oxidation) one. The existence of crosstalking between the electrodes is also highlighted. In addition, this simple methodology permits to finely retrieve and then surface map the local current density at both electrodes based on the local thickness change during the redox process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c10860DOI Listing

Publication Analysis

Top Keywords

lithium metal
8
x-ray tomography
8
negative electrode
8
dendrite growth
8
plating process
8
local current
8
electrode
5
quantification local
4
local topological
4
topological variations
4

Similar Publications

Optimal timing for lithium levels.

F1000Res

January 2025

Departments of Psychiatry, Neurology, Radiology, and Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.

Reddy and Reddy (2014) discuss the optimal timing for lithium levels in patients taking once-daily extended-release lithium formulations. They argue for blood sampling 24 h after the previous dose rather than the standard 12 h. I interpret the data quite differently.

View Article and Find Full Text PDF

With the global surge in lithium-ion batteries (LIBs), recycling spent LIBs has become an essential and urgent research area. In the context of global efforts to promote sustainable development, and achieve energy conservation and emission reduction, advancing recycling technologies that efficiently recover critical metals like Ni, Co, Mn, and Li is crucial. Herein, a novel and environmentally friendly simplified process for selectively extracting critical metals from the mixed electrode materials of spent LIBs is proposed for the first time.

View Article and Find Full Text PDF

Soluble Covalent Organic Frameworks as Efficient Lithiophilic Modulator for High-Performance Lithium Metal Batteries.

Angew Chem Int Ed Engl

January 2025

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Lithium metal batteries (LMBs) are regarded as the potential alternative of lithium-ion batteries due to their ultrahigh theoretical specific capacity (3860 mAh g-1). However, severe instability and safety problems caused by the dendrite growth and inevitable side reactions have hindered the commercialization of LMBs. To solve them, in this contribution, a design strategy of soluble lithiophilic covalent organic frameworks (COFs) is proposed.

View Article and Find Full Text PDF

In Situ Analysis of Li Plating and Stripping Behaviors Under Dynamic Current Conditions for Realistic Application Scenarios.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.

Lithium metal batteries are considered the holy grail for next-generation high-energy systems. However, lithium anode faces poor reversibility, unsatisfying cyclability and rate capability due to its uncontrollable plating/stripping behavior. While galvanostatic conditions are extensively studied, the behavior under more realistic application scenarios with variable inputs are less explored.

View Article and Find Full Text PDF

The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!