Quantification of coronary artery stenosis on X-ray angiography (XRA) images is of great importance during the intraoperative treatment of coronary artery disease. It serves to quantify the coronary artery stenosis by estimating the clinical morphological indices, which are essential in clinical decision making. However, stenosis quantification is still a challenging task due to the overlapping, diversity and small-size region of the stenosis in the XRA images. While efforts have been devoted to stenosis quantification through low-level features, these methods have difficulty in learning the real mapping from these features to the stenosis indices. These methods are still cumbersome and unreliable for the intraoperative procedures due to their two-phase quantification, which depends on the results of segmentation or reconstruction of the coronary artery. In this work, we are proposing a hierarchical attentive multi-view learning model (HEAL) to achieve a direct quantification of coronary artery stenosis, without the intermediate segmentation or reconstruction. We have designed a multi-view learning model to learn more complementary information of the stenosis from different views. For this purpose, an intra-view hierarchical attentive block is proposed to learn the discriminative information of stenosis. Additionally, a stenosis representation learning module is developed to extract the multi-scale features from the keyframe perspective for considering the clinical workflow. Finally, the morphological indices are directly estimated based on the multi-view feature embedding. Extensive experiment studies on clinical multi-manufacturer dataset consisting of 228 subjects show the superiority of our HEAL against nine comparing methods, including direct quantification methods and multi-view learning methods. The experimental results demonstrate the better clinical agreement between the ground truth and the prediction, which endows our proposed method with a great potential for the efficient intraoperative treatment of coronary artery disease.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2020.3017275DOI Listing

Publication Analysis

Top Keywords

coronary artery
28
artery stenosis
16
multi-view learning
16
direct quantification
12
quantification coronary
12
hierarchical attentive
12
stenosis
11
attentive multi-view
8
xra images
8
intraoperative treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!