Metal nanofibers with excellent electrical conductivity and superior mechanical flexibility have great potentials for fabrication of lightweight, flexible, and high-performance electromagnetic interference (EMI) shielding architectures. The weak interactions and large contact resistance among the wires, however, hinder their assembly into robust and high-performance EMI shielding monoliths. In this work, we used low fractions of polymers to assist the construction of lightweight, flexible, and highly conductive silver nanowire (AgNW) cellular monoliths with significantly enhanced mechanical strength and EMI shielding effectiveness (SE). The normalized surface specific SE of our AgNW-based cellular monoliths can reach up to 20522 dB·cm/g, outracing that of most shielding materials ever reported. Moreover, this robust conductive framework enabled the successful fabrication of hydrophobic, ultraflexible, and highly stretchable aerogel/polymer composites with outstanding EMI SE even at an extremely low AgNW content. Thus, this work demonstrated a facile and efficient strategy for assembling metal nanofiber-based functional high-performance EMI shielding architectures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c10492 | DOI Listing |
Small
January 2025
NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL, 32826, USA.
Since the explosive growth of state-of-the-art electronics and devices raises concerns about electromagnetic pollution, exploring novel and efficient electromagnetic interference (EMI) shielding materials is desirable and crucial. TiCT MXenes hold significant EMI shielding potential due to their inherent characteristics, including lightweight, metal-like conductivities, unique layered structure, and facile processing. Nonetheless, it remains challenging to fabricate TiCT MXenes-based EMI shielding materials with efficient shielding capability and low reflection.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, University of Tehran, Tehran, 14179-35840, Iran.
This paper introduces an analytical method for studying power transmission through an infinite array of helical-shaped metal particles in a lossy dielectric medium. While the assessment of composite slabs' transmitted power has been extensively researched in the electromagnetic interference (EMI) shielding field, many studies lack an adequate problem description. The primary inadequacy of these studies is the need for an analytical framework.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
SINOPEC, Beijing Research Institute of Chemical Industry, Beijing, 100013, China.
MXene is widely used in the electromagnetic interference (EMI) shielding field. However, the high electromagnetic reflectivity of pure MXene causes potential secondary EMI pollution. This study presents a hollow egg-box structure used in MXene composite film, by which the reflectivity (R) could decrease from 0.
View Article and Find Full Text PDFMater Horiz
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang province, 315201, China.
Stretchable electromagnetic interference (EMI) shields with strain-insensitive EMI shielding and Joule heating performances are highly desirable to be integrated with wearable electronics. To explore the possibility of applying geometric design in elastomeric liquid metal (LM) composites and fully investigate the influence of LM geometry on stretchable EMI shielding and Joule heating, multifunctional wrinkle-structured LM/Ecoflex sandwich films with excellent stretchability are developed. The denser LM wrinkle enables not only better electrical conduction, higher shielding effectiveness (SE) and steady-state temperature, but also enhanced strain-stable far-field/near-field shielding performance and Joule-heating capability.
View Article and Find Full Text PDFiScience
January 2025
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi'an, Shaanxi 710119, China.
Crack pattern-based metal grid film is an ideal candidate material for transparent electromagnetic interference shielding optical windows. However, achieving crack patterns with narrow grid spacing, small wire width, and high connectivity remains challenging. Herein, an aqueous acrylic colloidal dispersion was developed as a crack precursor for preparing crack patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!