Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Osteoclasts (OCs) are bone-resorbing cells formed by the serial fusion of monocytes. In mice and humans, three distinct subsets of monocytes exist; however, it is unclear if all of them exhibit osteoclastogenic potential. Here we show that in wild-type (WT) mice, Ly6C and Ly6C monocytes are the primary source of OC formation when compared to Ly6C monocytes. Their osteoclastogenic potential is dictated by increased expression of signaling receptors and activation of preestablished transcripts, as well as de novo gain in enhancer activity and promoter changes. In the absence of interferon regulatory factor 8 (IRF8), a transcription factor important for myelopoiesis and osteoclastogenesis, all three monocyte subsets are programmed to display higher osteoclastogenic potential. Enhanced NFATc1 nuclear translocation and amplified transcriptomic and epigenetic changes initiated at early developmental stages direct the increased osteoclastogenesis in Irf8-deficient mice. Collectively, our study provides novel insights into the transcription factors and active cis-regulatory elements that regulate OC differentiation. © 2020 American Society for Bone and Mineral Research (ASBMR).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168257 | PMC |
http://dx.doi.org/10.1002/jbmr.4165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!