Scientometric trends for coronaviruses and other emerging viral infections.

Gigascience

Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, P.O.B 653, 8410501, Beersheba, Israel.

Published: August 2020

Background: COVID-19 is the most rapidly expanding coronavirus outbreak in the past 2 decades. To provide a swift response to a novel outbreak, prior knowledge from similar outbreaks is essential.

Results: Here, we study the volume of research conducted on previous coronavirus outbreaks, specifically SARS and MERS, relative to other infectious diseases by analyzing >35 million articles from the past 20 years. Our results demonstrate that previous coronavirus outbreaks have been understudied compared with other viruses. We also show that the research volume of emerging infectious diseases is very high after an outbreak and decreases drastically upon the containment of the disease. This can yield inadequate research and limited investment in gaining a full understanding of novel coronavirus management and prevention.

Conclusions: Independent of the outcome of the current COVID-19 outbreak, we believe that measures should be taken to encourage sustained research in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429184PMC
http://dx.doi.org/10.1093/gigascience/giaa085DOI Listing

Publication Analysis

Top Keywords

previous coronavirus
8
coronavirus outbreaks
8
infectious diseases
8
scientometric trends
4
trends coronaviruses
4
coronaviruses emerging
4
emerging viral
4
viral infections
4
infections background
4
background covid-19
4

Similar Publications

While telegenetic counseling has increased substantially since the start of the COVID-19 pandemic, previous studies reported concerns around building rapport, nonverbal communication, and the patient-counselor relationship. This qualitative evaluation elicited feedback from genetic counselors, referring clinicians, and patients from a single healthcare organization to understand the user-driven reasons for overall satisfaction and experience. We conducted 22 in-depth, semi-structured interviews with participants from all 3 groups between February 2022 and February 2023.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19), resulting from the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), affects various bodily systems, including the heart, central nervous system, muscles, and bones, all of which harbor angiotensin-converting enzyme 2 (ACE-2) receptors similar to those in the respiratory system. However, research on the inflammatory response and its impact on systems such as the musculoskeletal one is relatively scarce. Our study aimed to investigate bone and muscle metrics as well as handgrip strength in individuals who recuperated from COVID-19 infection.

View Article and Find Full Text PDF

Background and objective Viral infections caused by cytomegalovirus, lymphocytic choriomeningitis virus, varicella-zoster virus, herpes simplex type 1 and type 2, rubella, measles, rubeola, HIV, West Nile virus, Lassa virus, and mumps are known to be associated with hearing loss. There have been reports of inner ear involvement in coronavirus disease 2019 (COVID-19) patients but the extent and variations in cochlear involvement of symptomatic and asymptomatic patients has not been adequately described. This study aimed to evaluate the hearing status among symptomatic and asymptomatic COVID-19 patients to address the prospects for routine screening for hearing loss in COVID-19 patients.

View Article and Find Full Text PDF

Background: Long-COVID research to date focuses on outcomes in non-hospitalised vs. hospitalised survivors. However Emergency Department attendees (post-ED) presenting with acute COVID-19 may experience less supported recovery compared to people admitted and discharged from hospital (post-hospitalised group, PH).

View Article and Find Full Text PDF

Structural insights into nucleocapsid protein variability: Implications for PJ34 efficacy against SARS-CoV-2.

Virology

January 2025

Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. Electronic address:

Human coronaviruses (HCoVs) include common cold viruses such as HCoV-229E, OC43, NL63 and HKU1 as well as MERS-CoV and SARS-CoV, which cause severe respiratory disease. Recently, SARS-CoV-2 caused a COVID-19 pandemic. The nucleocapsid (N) protein of coronaviruses, which is essential for RNA binding and homodimerization, has a highly conserved structure across viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!