Normocalcemic primary hyperparathyroidism (NHPT) was first described over 10 years ago, but uncertainties still remain about its definition, prevalence, and rates of complications. As a result, consensus management guidelines for this condition have not yet been published. Several hypotheses have been proposed for the pathophysiology of NHPT, but it may be a heterogeneous disorder with multiple causes, rather than a single etiology that explains this biochemical phenotype. A common clinical concern is whether NHPT should be treated surgically when complications are already present at first recognition of the disorder, rather than following patients clinically over time. The literature on NHPT is based mostly on larger studies of population-based cohorts and smaller studies from referral centers. Lack of rigorous diagnostic criteria and selection bias inherent in populations seen at tertiary referral centers may explain the heterogeneity of reported rates of bone and renal complications in relation to consistently mild laboratory alterations. Unresolved questions remain about the significance of NHPT when it is diagnosed biochemically without evident bone or kidney complications. Moreover, its natural history remains to be elucidated because a proportion of what is classified as NHPT may revert to normal spontaneously, thus revealing previously unrecognized secondary hyperparathyroidism. These issues indicate that caution should be used in recommending surgery for NHPT. This review will focus on recent issues regarding the pathophysiology, evaluation, and management of NHPT. © 2020 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422713 | PMC |
http://dx.doi.org/10.1002/jbm4.10391 | DOI Listing |
Int J Burns Trauma
December 2024
Department of Orthopedics, The Second Hospital of Hebei Medical University Shijiazhuang, Hebei, China.
Objectives: Osteoporosis is a complex disease that is influenced by several genetic markers. Many studies have examined the link between the gene rs1800012 polymorphism and osteoporosis risk. However, the findings of these studies are contradictory.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China.
Mitochondria is the cell's powerhouse. Mitochondrial disease refers to a group of clinically heterogeneous disorders caused by dysfunction in the mitochondrial respiratory chain, often due to mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) that encodes mitochondrial proteins. This dysfunction can lead to a variety of clinical phenotypes, particularly affecting organs with high energy demands, such as the brain and muscles.
View Article and Find Full Text PDFJCEM Case Rep
February 2025
University of Utah Health, Division of Endocrinology, Salt Lake City, UT 84108, USA.
Glucocorticoid resistance syndrome (GRS) is caused by inactivating pathogenic variants in the glucocorticoid receptor gene . Reduced glucocorticoid receptor signaling leads to decreased tissue sensitivity to cortisol and resultant biochemical hypercortisolism without the classic clinical features of Cushing syndrome. Patients variably present with signs and symptoms of mineralocorticoid and androgen excess from ACTH overstimulation of the adrenal cortex.
View Article and Find Full Text PDFIndian Dermatol Online J
December 2024
Financial Research and Executive Insights, Everest Group, Gurugram, Haryana, India.
Background: Artificial intelligence (AI) is revolutionizing healthcare by enabling systems to perform tasks traditionally requiring human intelligence. In healthcare, AI encompasses various subfields, including machine learning, deep learning, natural language processing, and expert systems. In the specific domain of onychology, AI presents a promising avenue for diagnosing nail disorders, analyzing intricate patterns, and improving diagnostic accuracy.
View Article and Find Full Text PDFHemasphere
January 2025
Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104 Assistance Publique-Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital Cochin Paris France.
Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!