Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is a rare autosomal recessive disorder of β-oxidation caused by pathogenic variants in the gene. Analyte testing for SCADD in blood and urine, including newborn screening (NBS) using tandem mass spectrometry (MS/MS) on dried blood spots (DBSs), is complicated by the presence of two relatively common variants (c.625G>A and c.511C>T). Individuals homozygous for these variants or compound heterozygous do not have clinical disease but do have reduced short-chain acyl-CoA dehydrogenase (SCAD) activity, resulting in elevated blood and urine metabolites. As part of a larger study of the potential role of exome sequencing in NBS in California, we reviewed sequence and MS/MS data from DBSs from a cohort of 74 patients identified to have SCADD. Of this cohort, approximately 60% had one or more of the common variants and did not have the two rare variants, and thus would need no further testing. Retrospective analysis of ethylmalonic acid, glutaric acid, 2-hydroxyglutaric acid, 3-hydroxyglutaric acid, and methylsuccinic acid demonstrated that second-tier testing applied before the release of the newborn screening result could reduce referrals by over 50% and improve the positive predictive value for SCADD to above 75%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423011 | PMC |
http://dx.doi.org/10.3390/ijns6020041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!