AI Article Synopsis

  • The study investigates the spray characteristics of a diesel engine injector nozzle using Residual Fuel Oil (RFO), focusing on its physicochemical properties and visualizing the spray pattern.
  • Experimental results showed that RFO produced higher spray parameter values compared to diesel, including a spray length of 456mm and a low cone angle of 12.69°, leading to potential issues like reduced engine power and injector clogging.
  • Optimal spray parameters were identified (e.g., spray length of 256mm and cone angle of 13.59°) to mitigate these challenges, achievable with a specific fuel injection time, viscosity, and temperature.

Article Abstract

Experimental analysis on the spray characteristics of a diesel engine injector nozzle fueled with Residual Fuel Oil (RFO) was carried out in this study. To achieve this, the fuel was characterized to determine its physicochemical properties, and an experimental set up was designed to visualize and capture the spray pattern of the fuel. The images obtained were processed and analysed using Image J software to determine the spray length, spray cone angle, spray area, spray volume, and spray velocity values of the fuel. Experimental results obtained agree with validation models and reveal that spray parameter values of RFO are higher than those of diesel fuel. The values of spray parameters of RFO such as 456mm spray length, 2.85mm Sauter Mean Diameter (SMD) and the low spray cone angle of 12.69°, led to a higher spray volume causing the engine to run on a rich mixture after initial start-up conditions. This would create such challenges as reduction in power and clogging of injector nozzle tip due to an increase in carbon deposits. Regression models generated reveal that these challenges could be eliminated when the spray parameters run on optimal values of 256mm, 6.41cm, 16.18cm, 0.96 mm/s and 13.59° for the spray length, spray area, spray volume, spray velocity and the spray angle respectively. These optimal values were obtained when the engine fuel injection time was set to 500μs while running on fuel of viscosity 4.305 mPa.s and temperature of 48 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417908PMC
http://dx.doi.org/10.1016/j.heliyon.2020.e04637DOI Listing

Publication Analysis

Top Keywords

spray
19
injector nozzle
12
spray length
12
spray volume
12
diesel engine
8
engine injector
8
spray characteristics
8
fueled residual
8
fuel
8
residual fuel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!