4-Coumarate: coenzyme A ligase () is a key enzyme involved in the early steps of the monolignol biosynthetic pathway. It is hypothesized to modulate S and G monolignol content in the plant. Lignin removal is imperative to the paper industry and higher S/G ratio governs better extractability of lignin and economics of the pulping process. This background prompted us to predict 3D structure of two isoforms of in and evaluate their substrate preferences. The 3D structure of and protein were created by homology modeling and further refined by loop refinement. Molecular docking studies suggested differential substrate preferences of both the isoforms. preferred sinapic acid (- 4.91 kcal/mole), ferulic acid (- 4.84 kcal/mole), hydroxyferulic acid (- 4.72 kcal/mole), and caffeic acid (- 4.71 kcal/mole), in their decreasing order. Similarly, preferred caffeic acid (- 6.56 kcal/mole, 4 H bonds), hydroxyferulic acid (- 6.56 kcal/mole, 3 H bonds), and ferulic acid (- 6.32 kcal/mole) and sinapic acid (- 5.00 kcal/mole) in their decreasing order. Further, active site residues were identified in both the isoforms and in silico mutation and docking analysis was performed. Our analysis suggested that ASP228, TYR262, and PRO326 for and SER165, LYS247 and PRO315 for were important for their functional activity. Based on differential substrate preferences of the two isoforms, as a first step towards genetically modified having the desired phenotype, it can be proposed that over-expression of gene and/or down-regulation of gene could yield higher S/G ratio leading to better extractability of lignin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415054PMC
http://dx.doi.org/10.1007/s13205-020-02375-2DOI Listing

Publication Analysis

Top Keywords

substrate preferences
12
higher s/g
8
s/g ratio
8
better extractability
8
extractability lignin
8
differential substrate
8
preferences isoforms
8
acid
8
sinapic acid
8
ferulic acid
8

Similar Publications

Human chitinolytic enzymes trigger growing interest, not only because a wide range of diseases and allergic responses are linked to chitinous components of pathogens, including their interplay with human enzymes, but also due to the increasing use of chitosans in biomedical applications. Here, we present a detailed side-by-side analysis of the only two human chitinases, chitotriosidase and acidic mammalian chitinase, as well as human lysozyme. By analyzing the cleavage of well-characterized chitosan polymers and defined chitin and chitosan oligomers, we report mild processivity and a quantitative subsite preference typical for GH18 chitinases for chitotriosidase and acidic mammalian chitinase.

View Article and Find Full Text PDF

Selective Hydrogen Isotope Exchange Catalysed by Simple Alkali-Metal Bases in DMSO.

Angew Chem Int Ed Engl

January 2025

Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND.

Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, and often exhibit high toxicity.

View Article and Find Full Text PDF

Differential substrate specificity of ERK, JNK, and p38 MAP kinases toward Connexin 43.

J Biol Chem

January 2025

Department of Biological Sciences, Moravian University, 1200 Main Street, Bethlehem, PA 18018, USA. Electronic address:

Phosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its ∼140 amino acid-long C-terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators.

View Article and Find Full Text PDF

The synthesis of n-3 and n-6 polyunsaturated acids (PUFAs) is associated with physiological functions in mammals, being catalyzed by Δ-5D and Δ-6D desaturases and elongases Elovl-2 and Elovl-5. In this context, we aimed to study the chief kinetic features of PUFA liver anabolism, looking upon (i) the time-dependency for the specific activity of Δ-6D, Δ-5D, Elovl2, Elovl2/5 and Elovl5, using n-3 and n-6 precursors between 0 and 240 min ex vivo in mouse liver.; and (ii) the specific activity-substrate (α-linolenic acid; ALA) concentration responses of Δ-6D in the absence and presence of linoleic acid (LA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), an enzyme regarded as the rate-limiting step in PUFA anabolism.

View Article and Find Full Text PDF

In this study, we investigated the [3+2] cycloaddition reaction of CFCN (TFAN) with nitrilimine (NI) to produce 1,2,4-triazole and compared the resulting isomers. We determined the preferred reaction pathway by examining the electrophilic and nucleophilic properties of the reaction substrates, performing thermodynamic calculations for the individual pathways, and comparing them with the experimental results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!