3D organ contouring is an essential step in radiation therapy treatment planning for organ dose estimation as well as for optimizing plans to reduce organs-at-risk doses. Manual contouring is time-consuming and its inter-clinician variability adversely affects the outcomes study. Such organs also vary dramatically on sizes - up to two orders of magnitude difference in volumes. In this paper, we present BrainSegNet, a novel 3D fully convolutional neural network (FCNN) based approach for automatic segmentation of brain organs. BrainSegNet takes a multiple resolution paths approach and uses a weighted loss function to solve the major challenge of the large variability in organ sizes. We evaluated our approach with a dataset of 46 Brain CT image volumes with corresponding expert organ contours as reference. Compared with those of LiviaNet and V-Net, BrainSegNet has a superior performance in segmenting tiny or thin organs, such as chiasm, optic nerves, and cochlea, and outperforms these methods in segmenting large organs as well. BrainSegNet can reduce the manual contouring time of a volume from an hour to less than two minutes, and holds high potential to improve the efficiency of radiation therapy workflow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427623PMC
http://dx.doi.org/10.1109/isbi45749.2020.9098485DOI Listing

Publication Analysis

Top Keywords

radiation therapy
12
fully convolutional
8
convolutional neural
8
neural network
8
therapy treatment
8
treatment planning
8
planning organ
8
manual contouring
8
organ
5
automatic brain
4

Similar Publications

Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.

View Article and Find Full Text PDF

Background: Radiation-induced sarcoma (RIS) is an exceptionally rare occurrence following radiation therapy, and manifestation usually occurs after a several-year latency period. Herein, the authors report the development of a radiation-induced osteosarcoma of the frontoparietal calvaria following treatment for an oligodendroglioma in an 84-year-old woman.

Observations: The patient had been diagnosed with a grade III anaplastic oligodendroglioma when she was 78 years old.

View Article and Find Full Text PDF

Carbon fibre reinforced polyetheretherketone (CFR-PEEK) implants have gained interest because of reported biomechanical advantages and radio-lucent properties. The aim of this study was to evaluate the role of CFR-PEEK nails in patients with metastatic bone disease (MBD). We performed a retrospective cohort study evaluating patients with MBD undergoing intramedullary (IM) nailing for prophylaxis or fixation of pathological fractures using CFR- PEEK or titanium implants.

View Article and Find Full Text PDF

COVID-19 has extensively affected the health-care organization with varying impact on different medical specialties. Long term ICU admission is associated with a less familiar complication: the formation of heterotopic ossifications (HO). In this case report we would like to emphasize the unrecognized burden of the coronavirus pandemic in patient care from the perspective of the orthopedic surgeon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!