Purpose: Clinical studies have confirmed that the hair-growth-promoting effect of approved oral drug combinations is beneficial for the treatment of diffuse telogen effluvium, which is characterized by the excessive loss of telogen club hairs. Since data elucidating the mode of action of such combinations are limited, our study focused on the identification of cellular processes potentially supporting the treatment of hair loss.
Materials And Methods: A minimal growth culture system (MGM) was used to mimic in vitro the reduced activity of human hair follicular keratinocytes (HHFKs). The effect of four core compounds (L-cystine, thiamine, calcium D-pantothenate, and folic acid) of a marketed oral combination (Panto[vi]gar), which are approved for the treatment of diffuse hair loss, was examined by comparing HHFKs cultured either with or without the compounds. After determining their impact on metabolic activity and proliferation, we conducted a comparative whole-genome gene expression study with subsequent functional grouping of differentially expressed genes to identify cellular processes influenced by the tested compounds.
Results: The four core compounds of an oral hair-growth formulation enhanced proliferation and metabolic activity of HHFKs compared to HHFKs cultivated in MGM only. Functional grouping of differentially expressed genes confirmed the regulation of cell cycle-/proliferation-associated genes (cdk1, HJURP) and revealed regulation of cell death- and oxidative stress-associated gene groups. A supportive effect of the compounds on cell viability was demonstrated by lower sensitivity to solar-simulated UV-radiation and increased protection against oxidative stress. We established a central role for L-cystine, as changes in the expression of the anti-oxidative gene hmox1 were L-cystine-dependent. However, to reach a maximal stimulating effect on proliferation, the combination of all four compounds was necessary.
Conclusion: The tested compound combination had positive effects on metabolic activity, cell viability, and proliferation of keratinocytes. Furthermore, this study suggested that L-cystine primarily contributes to the observed protection against endogenous oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413702 | PMC |
http://dx.doi.org/10.2147/CCID.S254720 | DOI Listing |
Hum Exp Toxicol
January 2025
Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China.
Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.
View Article and Find Full Text PDFNeurochem Res
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Division of Internal Medicine, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, University of Milan, Piazzale Principessa Clotilde, 3, Milan, 20121, Italy.
Purpose Of Review: To outline the latest discoveries regarding the utility and reliability of serum biomarkers in idiopathic recurrent acute pericarditis (IRAP), considering recent findings on its pathogenesis. The study highlights the predictive role of these biomarkers in potential short- (cardiac tamponade, recurrences) and long-term complications (constrictive pericarditis, death).
Recent Findings: The pathogenesis of pericarditis has been better defined in recent years, focusing on the autoinflammatory pathway.
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!