Background: Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor has therapeutic potential for acute ischemic stroke by suppressing microglial activation and facilitating neuroprotection. In this first-in-human study, we investigate the safety, tolerability and pharmacokinetics (PK) of JPI-289 in healthy male volunteers.

Subjects And Methods: In single ascending dose (SAD) study, 35, 75, 150, 300, 600 mg JPI-289 or placebo was infused intravenously over 30 minutes to 40 subjects. In multiple ascending dose (MAD) study, 150, 300, 450 mg JPI-289 or placebo was infused over 1 hour every 12 hours to each of 24 subjects for 3.5 days (7 times). The plasma and urine concentrations of JPI-289 and its metabolites were determined.

Results: In the SAD study, AUC and C tended to increase supra-proportionally especially at higher doses in SAD study. However, C showed dose-proportionality in the range of 75-600mg. JPI-289 reached a mean T within 0.50 hour after dosing and a mean elimination half-life (t) was 2.18 to 3.21 hours. In the MAD study, observed accumulation index ranged from 1.52 to 1.76. The effective half-life of JPI-289 was 1.88 to 3.05 hours, indicating that the plasma JPI-289 concentration rapidly reaches steady state. % recovered of JPI-289 measured in urine was 1.59-9.05%. In both studies, concentration of metabolites was less than 10% of JPI-289. Adverse events reported in the study were all mild in intensity and resolved without any sequelae.

Conclusion: The tolerable dose ranges and pharmacokinetic characteristics of JPI-289 evaluated in these studies will be useful in further clinical development of JPI-289.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415440PMC
http://dx.doi.org/10.2147/DDDT.S235802DOI Listing

Publication Analysis

Top Keywords

jpi-289
12
sad study
12
safety tolerability
8
tolerability pharmacokinetics
8
poly adp-ribose
8
adp-ribose polymerase-1
8
jpi-289 healthy
8
ascending dose
8
study 150
8
150 300
8

Similar Publications

Excessive activation of poly (ADP-ribose) polymerase (PARP) contributes to ischemic acute kidney injury (AKI). PARP inhibition has been shown to be beneficial in renal ischemia-reperfusion injury (IRI) in the early phase, but its role in the repair process remains unclear. The effects of JPI-289, a novel PARP inhibitor, during the healing phase after renal IRI were investigated.

View Article and Find Full Text PDF

Intrarenal robust inflammatory response following ischemia-reperfusion injury (IRI) is a major factor in the pathogenesis of renal injury in ischemic acute kidney injury (AKI). Although numerous studies have investigated various agents of immune modulation or suppression for ischemic AKI, few showed reproducible effects. We hypothesized that poly (ADP-ribose) polymerase (PARP) inhibitor may favorably change post-ischemic intrarenal immunologic micromilieu by reducing damage-associated molecular pattern (DAMP) signals and improve renal outcome in ischemic AKI.

View Article and Find Full Text PDF

Background: Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor has therapeutic potential for acute ischemic stroke by suppressing microglial activation and facilitating neuroprotection. In this first-in-human study, we investigate the safety, tolerability and pharmacokinetics (PK) of JPI-289 in healthy male volunteers.

Subjects And Methods: In single ascending dose (SAD) study, 35, 75, 150, 300, 600 mg JPI-289 or placebo was infused intravenously over 30 minutes to 40 subjects.

View Article and Find Full Text PDF

Background: Regulatory T cells (Tregs) are thought to play a modulatory role in immune responses and to improve outcomes after ischemic stroke. Thus, various strategies for increasing Tregs in animal models of ischemic stroke have yielded successful results. The aim of this study was to examine the potential effect of poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor on Treg proportion in stroke patients.

View Article and Find Full Text PDF

In patients with stroke and neurodegenerative diseases, overactivation of poly(ADP-ribose) polymerase-1 (PARP-1) causes harmful effects by inducing apoptosis, necrosis, neuroinflammation, and immune dysregulation. The current study investigated the neuroprotective effect of a novel PARP-1 inhibitor, JPI-289, in an animal model of ischemic stroke. A transient middle cerebral artery occlusion (tMCAO, 2 h) model was used to determine the therapeutic effect and the most effective dose and time window of administration of JPI-289.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!