Neuropilin-1 regulated by miR-320a participates in the progression of cholangiocarcinoma by serving as a co-receptor that activates multiple signaling pathways. The present study sought to investigate upstream lncRNAs that control the expression of miR-320a/neuropilin-1 axis and dissect some of the underlying mechanisms. Here we report lncRNA TTN-AS1 (titin-antisense RNA1) acts as a sponging ceRNA to downregulate miR-320a and is highly expressed in human cholangiocarcinoma tissues and cells. The expression of the above three molecules is correlated with the clinicopathologic parameters of cholangiocarcinoma patients. In this study, multiple bioinformatics tools and databases were employed to seek potential lncRNAs that have binding sites with miR-320a and TTN-AS1 was identified because it exhibited the largest folds of alteration between cholangiocarcinoma and normal bile duct epithelial cells. The regulatory role of TTN-AS1 on miR-320a was further evaluated by luciferase reporter and RNA pulldown assays, coupled with in situ hybridization and RNA immunoprecipitation analyses, which showed that TTN-AS1 bound to miR-320a through an argonaute2-dependent RNA interference pathway in the cytoplasm of cholangiocarcinoma cells. Knockdown and overexpression assays showed that the regulatory effect between TTN-AS1 and miR-320 was in a one-way manner. TTN-AS1 promoted the proliferation and migration of cholangiocarcinoma cells via the miR-320a/ neuropilin-1 axis. The function of TTN-AS1 on tumor growth and its interaction with miR-320a were confirmed in animal models. Further mechanistic studies revealed that TTA-AS1, through downregulating miR-320a, promoted cell cycle progression, epithelial-mesenchymal transition, and tumor angiogenesis by upregulating neuropilin-1, which co-interacted with the hepatocyte growth factor/c-Met and transforming growth factor (TGF)-β/TGF-β receptor I pathways. In conclusion, the present results demonstrate that lncRNA TTA-AS1 is a sponging ceRNA for miR-320a, which in turn downregulates neuropilin-1 in cholangiocarcinoma cells, indicating these three molecules represent potential biomarkers and therapeutic targets in the management of cholangiocarcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429853PMC
http://dx.doi.org/10.1038/s41419-020-02896-xDOI Listing

Publication Analysis

Top Keywords

cholangiocarcinoma cells
12
cholangiocarcinoma
9
lncrna ttn-as1
8
progression cholangiocarcinoma
8
mir-320a/neuropilin-1 axis
8
mir-320a
8
sponging cerna
8
three molecules
8
ttn-as1
7
cells
5

Similar Publications

Article Synopsis
  • Clonorchis sinensis infection significantly worsens overall survival rates in patients with intrahepatic cholangiocarcinoma (ICC) compared to those without the infection.
  • Researchers used RNA sequencing and animal models to investigate how C. sinensis infection facilitates the progression of ICC.
  • The study found that C. sinensis infection leads to increased expression of fatty acid synthase (FASN), which promotes fatty acid synthesis and tumor growth, suggesting a potential new target for treatment in ICC patients infected with C. sinensis.
View Article and Find Full Text PDF

Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.

View Article and Find Full Text PDF

Learning from Other Tumors: Pathways for Progress and Overcoming Challenges in Cholangiocarcinoma.

Cancers (Basel)

January 2025

Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, CIBERehd, Campus M. Unamuno s/n, 37007 Salamanca, Spain.

Cholangiocarcinoma (CCA) is a group of complex and heterogeneous tumors originating from the epithelial cells of bile ducts that can occur in intrahepatic, perihilar, or distal localizations [...

View Article and Find Full Text PDF

Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers.

View Article and Find Full Text PDF

Heteronemin suppresses EGF‑induced proliferation through the PI3K/PD‑L1 signaling pathways in cholangiocarcinoma.

Oncol Rep

March 2025

Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.

Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!