Mesenchymal stromal cell (MSC)-derived exosome therapy has emerged as an effective therapy strategy for the pathological scar formation. However, the underlying mechanisms have not been completely understood. In the current study, we investigate the therapeutic effect of TSG-6 modified MSC-derived exosomes on a mouse full-thickness wound model and provide evidence of a possible mechanism for MSC-derived exosomes to prevent from scar formation. Overexpression and knockdown of TSG-6 were conducted by lentivirus infection into hBMSCs. Exosomes were isolated from cell culture and identified by transmission electron microscopy and Western blot. C57BL/6J mice were performed of full-thickness skin wounds and treated with exosomal suspension or TSG-6-neutralizing antibody. H&E staining was subjected to observe the pathological changes of scar tissues. Immunohistochemistry, ELISA, real time-PCR and Western blot were applied to detect the expressions of relevant molecules. The results showed that subcutaneous injection of TSG-6 overexpressed MSC-derived exosomes effectively ameliorated scar pathological injury, decreased inflammatory molecular secretion and attenuated collagen deposition in a mouse skin wound model. Reversely, knockdown of TSG-6 abrogated the therapeutic effect of MSC-derived exosomes on scarring. Moreover, TSG-6-neutralizing antibody counteracted the effect of TSG-6 overexpressed MSC-derived exosomes in preventing scar formation. In conclusion, we demonstrated that exosomes derived from TSG-6 modified MSCs suppressed scar formation via reducing inflammation and inhibiting collagen deposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2020.08.003 | DOI Listing |
Wound Repair Regen
January 2025
Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Bacterial colonisation in hypertrophic scars (HSs) has been reported, yet the precise mechanism of their contribution to scar formation remains elusive. To address this, we examined HS and normal skin (NS) tissues through Gram staining and immunofluorescence. We co-cultured fibroblasts with heat-inactivated Staphylococcus aureus (S.
View Article and Find Full Text PDFIndian J Thorac Cardiovasc Surg
February 2025
Department of Cardiology, G.B. Pant Institute of Postgraduate Medical Education & Research and associated Maulana Azad Medical College, Room No. 133, First Floor, Academic Block, New Delhi, India.
Left ventricular (LV) pseudoaneurysm, a rare occurrence, develops when a ruptured ventricle is encapsulated by the pericardium or scar tissue. Unlike free intrapericardial rupture, which often results in cardiac tamponade and fatal outcome, there are instances where the cardiac rupture remains contained, forming a pseudoaneurysm and averting immediate tamponade. We describe a 43-year-old male who underwent successful surgical repair of LV rupture following inferior wall myocardial infarction that resulted in the formation of a large pseudoaneurysm.
View Article and Find Full Text PDFBurns Trauma
January 2025
Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
Background: Keloids are disfiguring, fibrotic scar-like lesions that are challenging to treat and commonly recur after therapy. A deeper understanding of the mechanisms driving keloid formation is necessary for the development of more effective therapies. Reduced vitamin D receptor (VDR) expression has been observed in keloids, implicating vitamin D signaling in keloid pathology.
View Article and Find Full Text PDFASN Neuro
January 2025
Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology.
View Article and Find Full Text PDFIBRO Neurosci Rep
June 2025
Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France.
It is well recognized that type II Diabetes (T2D) and overweight/obesity are established risk factors for stroke, worsening also their consequences. However, the underlying mechanisms by which these disorders aggravate outcomes are not yet clear limiting the therapeutic opportunities. To fill this gap, we characterized, for the first time, the effects of T2D and obesity on the brain repair mechanisms occurring 7 days after stroke, notably glial scarring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!