MicroRNAs (miRNA) are believed to play a crucial role in the cause and treatment of temporal lobe epilepsy (TLE) by controlling gene expression in different stages of the disease. To investigate role of miRNA in the latent stage following status epilepticus, we first compared microRNA expression profiles in mice hippocampus at 1 week after pilocarpine-induced status epilepticus (SE) vs. controls in hippocampal tissues using Exiqon miRCURY LNA™ miRNAs Array. Then, the target genes of altered miRNAs were predicted using both TargetScan 7.1 and miRDB V5, and were further selected by intersecting with another independent mRNA expression profile dataset from the samples at the same time point. We found out 14 common genes as down miRNA target (up-mRNA) and 4 common genes as up miRNA target (down mRNA) in SE mice. miR-669m-3p-TRHR (thyrotropin releasing hormone receptor), miR-669m-3p-B3galt2 (β-1,3-Galactosyltransferase 2), miR-105-PDPN (Podoplanin) and miR-883b-3p-CLEC-2 (C-type-lectin-like-2) were found to be potential molecular mechanisms to modulate the calcium signaling pathway, glycosylation pathways and chemokine mediated inflammatory processes in mice hippocampus at 1 week after pilocarpine-induced SE, respectively. Our results offered potential novel insights into the cellular events in the mice hippocampus mediated by miRNASs-target genes that shape SE-evoked epileptogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.06.125 | DOI Listing |
Cell Commun Signal
January 2025
Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
Cognitive impairment is a significant complication of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the development of cognitive dysfunction in individuals with T2DM remain elusive. Herein, we discussed the role of Bmal1, a core circadian rhythm-regulating gene, in the process of T2DM-associated cognitive dysfunction.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China.
Background: Perioperative neurocognitive disorder (PND) is a prevalent form of cognitive impairment in elderly patients following anesthesia and surgery. The underlying mechanisms of PND are closely related to perineuronal nets (PNNs). PNNs, which are complexes of extracellular matrix primarily surrounding neurons in the hippocampus, play a critical role in neurocognitive function.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
Background: Fluoroethylnormemantine (FENM), a new Memantine (MEM) derivative, prevented amyloid-β[25-35] peptide (Aβ)-induced neurotoxicity in mice, a pharmacological model of Alzheimer's disease (AD) with high predictive value for drug discovery. Here, as drug infusion is likely to better reflect drug bioavailability due to the interspecies pharmacokinetics variation, we analyzed the efficacy of FENM after chronic subcutaneous (SC) infusion, in comparison with IP injections in two AD mouse models, Aβ-injected mice and the transgenic APP/PSEN1 (APP/PS1) line.
Methods: In Aβ-treated mice, FENM was infused at 0.
Mol Neurobiol
January 2025
Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Neurology, Second Affiliated Hospital of Army Medical University (Xinqiao Hospital), Chongqing, China.
Alzheimer's disease (AD) is a prototypical neurodegenerative disorder, predominantly affecting individuals in the presenile and elderly populations, with an etiology that remains elusive. This investigation aimed to elucidate the alterations in anoikis-related genes (ARGs) in the AD brain, thereby expanding the repertoire of biomarkers for the disease. Using publically available gene expression data for the hippocampus from both healthy and AD subjects, differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!