17β-estradiol promotes bone marrow mesenchymal stem cell migration mediated by chemokine upregulation.

Biochem Biophys Res Commun

Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital Affiliated with Fudan University, Shanghai, 200011, China; Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. Electronic address:

Published: September 2020

Bone marrow-derived cells engraft to the uterine endometrium and contribute to endometriosis. This study sought to further confirm that estrogen can promote the migration of bone marrow mesenchymal stem cells (BMSCs) and to investigate the function of estrogen on the secretion of chemokines during BMSC migration. BMSCs were treated with or without 17β-estradiol, cultured with or without endometrial stromal cells (ESCs), or pretreated with or without AMD 3100 (an antagonist of the SDF-1α receptor) before co-culture. A migration assay was used to investigate the changes in the migration of BMSCs. The secretion of chemokines in the co-culture medium was detected by chemokine analysis, and the mRNA expression of SDF-1α in cells was tested using quantitative real-time PCR. The results revealed that the migration of BMSCs was promoted by ESC, and the migration ability of BMSCs was enhanced after treatment with 17β-estradiol (p < 0.05). Through chemokine analysis, we further showed that 17β-estradiol promoted the secretion of chemokines especially for SDF-1α (p < 0.05). Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these chemokines were mainly linked to the cytokine signaling pathway and interaction with cytokines receptors. Furthermore, the expression of SDF-1α mRNA was significantly increased in the 17β-estradiol treatment group (p < 0.001), and the migration of BMSCs was blocked by the use of our SDF-1α antagonist (p < 0.01). Our results indicate that 17β-estradiol could promote the chemotaxis and migration of BMSCs by up-regulating the secretion of chemokines, especially SDF-1α. Our study provides additional evidence to support and supplement the stem cell theory of endometriosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.07.135DOI Listing

Publication Analysis

Top Keywords

migration bmscs
12
bone marrow
8
marrow mesenchymal
8
mesenchymal stem
8
secretion chemokines
8
migration
7
bmscs
5
17β-estradiol promotes
4
promotes bone
4
stem cell
4

Similar Publications

High paracrine activity of hADSCs cartilage microtissues inhibits extracellular matrix degradation and promotes cartilage regeneration.

Mater Today Bio

February 2025

Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China.

Due to its unique structure, articular cartilage has limited self-repair capacity. Microtissues are tiny tissue clusters that can mimic the function of target organs or tissues. Using cells alone for microtissue construction often results in the formation of necrotic cores.

View Article and Find Full Text PDF

Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.

View Article and Find Full Text PDF

Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning mA RNA modification.

View Article and Find Full Text PDF

After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.

View Article and Find Full Text PDF
Article Synopsis
  • The prolonged use of external fixation during distraction osteogenesis (DO) can heighten complications, while bone marrow mesenchymal stem cells (BMSCs) play a crucial role in bone regeneration due to their pro-angiogenic and osteogenic abilities.
  • RSC-96, a type of Schwann cell, has been shown to promote the proliferation, migration, and differentiation of BMSCs when co-cultured, enhancing both bone formation and blood vessel development through neurotrophic factor secretion and activation of specific signaling pathways.
  • In a rat DO model, RSC-96's conditioned medium improved bone healing outcomes, with notable increases in gene expression markers for osteogenesis and angiogenesis, alongside positive radiological and biomechanical assessments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!