Cation diffusion facilitators (CDFs) play central roles in metal homeostasis and tolerance in plants, but the specific functions of Camellia sinensis CDF-encoding genes and the underlying mechanisms remain unknown. Previously, transcriptome sequencing results in our lab indicated that the expression of CsMTP8.2 in tea plant shoots was down-regulated exposed to excessive amount of Mn conditions. To elucidate the possible mechanisms involved, we systematically identified 13 C. sinensis CsMTP genes from three subfamilies and characterized their phylogeny, structures, and the features of the encoded proteins. The transcription of CsMTP genes was differentially regulated in C. sinensis shoots and roots in responses to high concentrations of Mn, Zn, Fe, and Al. Differences in the cis-acting regulatory elements in the CsMTP8.1 and CsMTP8.2 promoters suggested the expression of these two genes may be differentially regulated. Transient expression analysis indicated that CsMTP8.2 was localized to the plasma membrane in tobacco and onion epidermal cells. Moreover, when heterologously expressed in yeast, CsMTP8.2 conferred tolerance to Ni and Mn but not to Zn. Additionally, heterologous expression of CsMTP8.2 in Arabidopsis thaliana revealed that CsMTP8.2 positively regulated the response to manganese toxicity by decreasing the accumulation of Mn in plants. However, there was no difference in the accumulation of other metals, including Cu, Fe, and Zn. These results suggest that CsMTP8.2 is a Mn-specific transporter that contributes to the efflux of excess Mn from plant cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.110904DOI Listing

Publication Analysis

Top Keywords

tea plant
8
camellia sinensis
8
csmtp82
8
manganese toxicity
8
expression csmtp82
8
csmtp genes
8
genes differentially
8
differentially regulated
8
identification mtp
4
mtp gene
4

Similar Publications

Cloning and functional characterization of the caffeine oxidase gene CsCDH from Camellia sinensis.

Int J Biol Macromol

January 2025

Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China. Electronic address:

Theacrine, a purine alkaloid with pharmacological effects such as calming and anti-depressive activities, is biosynthesized through a key rate-limiting enzyme, caffeine oxidase. Despite its importance, the caffeine oxidase gene (CsCDH) in Camellia sinensis has not been cloned to date. We successfully isolated the full-length CsCDH cDNA, which contains a 501-bp open reading frame (ORF) encoding a 166-amino-acid protein with a calculated molecular weight of 18.

View Article and Find Full Text PDF

Thiol-modified hyaluronic acid and hydroxyl radical-induced oxidation synergistically enhance the gelling capacity of ginkgo seed proteins.

Food Chem

January 2025

Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

The objective of this work was to investigate the effect of synthetic thiol-modified hyaluronic acid (HASH) on the gelation properties of ginkgo seed protein isolate (GSPI) under non-oxidizing (NOX) or oxidizing (OX) conditions. Under NOX conditions, HASH mediated the disruption of disulfide bonds, leading to a dose-dependent dissociation of GSPI. Conversely, in OX conditions, hydroxyl radical-induced oxidation facilitated the formation of interprotein disulfide bonds.

View Article and Find Full Text PDF

The GRAS transcription factor PtrPAT1 of functions in cold tolerance and modulates glycine betaine content by regulating the -like gene.

Hortic Res

January 2025

National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.

GRAS, termed after gibberellic acid insensitive (GAI), RGA (repressor of GA1), and SCR (scarecrow), is a plant-specific transcription factor crucial for plant development and stress response. However, understanding of the functions played by the GRAS members and their target genes in citrus is limited. In this study, we identified a cold stress-responsive GRAS gene from , designated as PtrPAT1, by yeast one-hybrid library screening using the promoter of , a betaine aldehyde dehydrogenase (BADH)-like gene.

View Article and Find Full Text PDF

An image dataset for analyzing tea picking behavior in tea plantations.

Front Plant Sci

January 2025

School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou, China.

Tea is an important economic product in China, and tea picking is a key agricultural activity. As the practice of tea picking in China gradually shifts towards intelligent and mechanized methods, artificial intelligence recognition technology has become a crucial tool, showing great potential in recognizing large-scale tea picking operations and various picking behaviors. Constructing a comprehensive database is essential for these advancements.

View Article and Find Full Text PDF

Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!