Evaluation of bioremediation strategies for treating recalcitrant halo-organic pollutants in soil environments.

Ecotoxicol Environ Saf

Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, CONICET, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, CP3300, Posadas, Misiones, Argentina.

Published: October 2020

AI Article Synopsis

  • The study examined bioremediation methods for polychlorinated biphenyls (PCBs) in soil using three strategies: mycoaugmentation with specific fungi, biostimulation with sugarcane bagasse, and natural attenuation without amendments.
  • Both mycoaugmentation and biostimulation showed significant effectiveness, removing approximately 90% of PCBs and reducing toxicity in the soil over 90 days.
  • The results indicated that sugarcane bagasse serves as an effective support for fungal growth and improves soil quality while highlighting mycoaugmentation and biostimulation as viable solutions for cleaning up PCB-contaminated soils.

Article Abstract

The aim of this study was to investigate the bioremediation potential of polychlorinated biphenyls (PCBs) in soil, mimicking three strategies: (a) mycoaugmentation: by the addition of Trametes sanguinea and Pleurotus sajor-caju co-cultures immobilized on sugarcane bagasse; (b) biostimulation: by supplementation of sugarcane bagasse; and (c) natural attenuation: no amendments. The experiments were done in microcosms using Ultisol soil. Remediation effectiveness was assessed based on pollutants content, soil characteristics, and ecotoxicological tests. Biostimulation and mycoaugmentation demonstrated the highest PCBs-removal (approx. 90%) with a significant toxicity reduction at 90 d. The studied strains were able to survive during the incubation period in non-sterilized soil. Laccase, manganese-peroxidase and endoxylanase activities increased significantly in co-cultures after 60 d. Sugarcane bagasse demonstrated to be not only a suitable support for fungal immobilization but also an efficient substrate for fungal colonization of PCBs-contaminated soils. Mycoaugmentation and biostimulation with sugarcane bagasse improved oxidable organic matter and phosphorous contents as well as dehydrogenase activity in soil. Therefore, biostimulation with sugarcane bagasse and mycoaugmentation applying dual white-rot fungal cultures constitute two efficient bioremediation alternatives to restore PCBs-contaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.110929DOI Listing

Publication Analysis

Top Keywords

sugarcane bagasse
20
pcbs-contaminated soils
8
biostimulation sugarcane
8
soil
6
sugarcane
5
bagasse
5
evaluation bioremediation
4
bioremediation strategies
4
strategies treating
4
treating recalcitrant
4

Similar Publications

Alkali-Activated Permeable Concretes with Agro-Industrial Wastes for a Sustainable Built Environment.

Materials (Basel)

December 2024

Department of Architectural and Construction Design, Faculty of Architecture, Wrocław University of Science and Technology, Politechnika Wrocławska 27, 50-370 Wrocław, Poland.

This research presents a proposal for alkali-activated permeable concrete composites with the use of industrial by-products, including ground granulated blast-furnace slag (GGBS) and waste-foundry sand, as well as agro-desecrate product, i.e., sugarcane bagasse ash (SBA).

View Article and Find Full Text PDF

Synergistic Effect of Sugarcane Bagasse and Zinc Oxide Nanoparticles on Eco-Remediation of Cadmium-Contaminated Saline Soils in Wheat Cultivation.

Plants (Basel)

December 2024

Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary.

Soil contamination with cadmium (Cd) and salinity poses a significant challenge, affecting crop health and productivity. This study explores the combined application of sugarcane bagasse (SCB) and zinc oxide nanoparticles (ZnO NPs) to mitigate the toxic effects of Cd and salinity in wheat plants. Field experiments conducted in Cd-contaminated saline soils revealed that the application of SCB (0, 5, and 10 t ha) and ZnO NPs (0, 12.

View Article and Find Full Text PDF

Redefining the product portfolio of oilcane bagasse biorefinery: Recovering natural colorants, vegetative lipids and sugars.

Bioresour Technol

January 2025

Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:

Bioenergy crops have been known for their ability to produce biofuels and bioproducts. In this study, the product portfolio of recently developed transgenic sugarcane (oilcane) bagasse has been redefined for recovering natural pigments (anthocyanins), sugars, and vegetative lipids.The total anthocyanin content in oilcane bagasse has been estimated as 92.

View Article and Find Full Text PDF

Addressing environmental challenges such as pollution and resource depletion requires innovative industrial and municipal waste management approaches. Cement production, a significant contributor to greenhouse gas emissions, highlights the need for eco-friendly building materials to combat global warming and promote sustainability. This study evaluates the simultaneous use of Sugarcane Bagasse Ash (SCBA) and Stone Dust (SD) as partial replacements by volume for cement and sand, respectively, at varying ratios in eco-strength concrete mixes designed for 28 MPa (ES-28) and 34 MPa (ES-34), emphasizing their economic and environmental benefits.

View Article and Find Full Text PDF

Recombinant expression and characterization of the family 5 cellulase from in BL21-CodonPlus (DE3)-RIPL.

Biochem Biophys Rep

March 2025

Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, Vladivostok, 690922, Russia.

B. velezensis RB. IBE29 is a chitinolytic bacterium originally isolated from agricultural soil of Vietnam.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!