For metabolite profiling chemical derivatization has been used to improve MS sensitivity and LC retention. However, for multi-analytes quantification, the number of commercially available isotopically labelled internal standards is limited. Besides, there is no single workflow which can provide large-scale metabolomics coverage in particular for polar metabolites. To overcome these limitations and to improve reproducibility a fully automated dual derivatization approach was developed. Differential Isotope Labeling (DIL) was adopted by derivatizing carbonyl, amino and phenol metabolites with two isotopic forms. Urine samples were derivatized with C-dansyl chloride (DnsCl) and C-dansylhydrazine (DnsHz). Suitable quantification standards were generated by derivatized 40 standards including amino acids, sex hormones and other highly polar metabolites with labelled C-dansyl chloride and C-dansylhydrazine. The derivatization of the standards and the urine sample was performed using a PAL RTC autosampler in-line to column-switching LC-HRMS analysis with data independent acquisition (SWATH-MS). The parallel reactions were completed in 15 min inside of two agitators at different conditions overlapping with the LC-MS analysis time which was of 25 min. The column switching setup is critical to remove the excess of reagents which can negatively affect the ionization efficiency and deteriorate the chromatographic performance. The combination of dual DIL with SWATH-MS acquisition enables post-identification of unknown metabolites and quantitation at precursor (MS1) and specific tag fragment (MS2) levels. The inter- and intra-batch accuracy and precision of the method fall in the range ±15% using single point calibration, and at MS1 or MS2 level providing full flexibility. The method was successfully applied to the analysis of human urine samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2020.06.030 | DOI Listing |
Anal Bioanal Chem
January 2025
Department of Chemistry, University of Wisconsin, Madison, WI, USA.
Quantitative measurement of metabolites is essential to understand biological and disease processes. Absolute quantification by spiking heavy isotope-labeled internal standards and analyzing on mass spectrometry (MS) platform is a key method to determine the concentration of metabolites in biological samples. However, MS-based absolute quantification is often challenged by the commercial availability and high costs of isotope-labeled internal standards.
View Article and Find Full Text PDFMar Drugs
December 2024
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia.
In their shapes, molecules of some bipolar metabolites resemble the so-called bola, a hunting weapon of the South American inhabitants, consisting of two heavy balls connected to each other by a long flexible cord. Herein, we discuss the structures and properties of these natural products (bola-like compounds or bolaamphiphiles), containing two polar terminal fragments and a non-polar chain (or chains) between them, from archaea, bacteria, and marine invertebrates. Additional modifications of core compounds of this class, for example, interchain and intrachain cyclization, hydroxylation, methylation, etc.
View Article and Find Full Text PDFMetabolites
January 2025
Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, Mexico.
: Jacq. (HP) is widely recognized in traditional medicine for its antimicrobial properties, which are attributed to secondary metabolites such as phenolic compounds, alkaloids, and terpenes. f.
View Article and Find Full Text PDFMetabolites
January 2025
Sport Coaching College, Beijing Sport University, Beijing 100084, China.
Objective: This study aimed to explore the molecular response mechanisms of differential blood metabolites before and after 8 weeks of threshold and polarized training models using metabolomics technology combined with changes in athletic performance.
Methods: Twenty-four male rowers aged 14-16 were randomly divided into a THR group and a POL group (12 participants each). The THR group followed a threshold training model (72%, 24%, and 4% of training time in low-, moderate-, and high-intensity zones, respectively), while the POL group followed a polarized training model (78%, 8%, and 14% training-intensity distribution).
Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!