An ultrasensitive and portable microfluidic electrochemical immunosensor for SOX-2 cancer biomarker determination was developed. The selectivity and sensitivity of the sensor were improved by modifying the microfluidic channel. This was accomplished through a physical-chemical treatment to produce a hydrophilic surface, with an increased surface to volume/ratio, where the anti-SOX-2 antibodies can be covalently immobilized. A sputtered gold electrode was used as detector and its surface was activated by using a dynamic hydrogen bubble template method. As a result, a gold nanoporous structure (NPAu) with outstanding properties, like high specific surface area, large pore volume, uniform nanostructure, good conductivity, and excellent electrochemical activity was obtained. SOX-2 present in the sample was bound to the anti-SOX-2 immobilized in the microfluidic channel, and then was labeled with a second antibody marked with horseradish peroxidase (HRP-anti-SOX-2) like a sandwich immunoassay. Finally, an HO + catechol solution was added, and the enzymatic product (quinone) was reduced on the NPAu electrode at +0.1 V (vs. Ag). The current obtained was directly proportional to the SOX-2 concentration in the sample. The detection limit achieved was 30 pg mL, and the coefficient of variation was less than 4.75%. Therefore, the microfluidic electrochemical immunosensor is a suitable clinical device for in situ SOX-2 determination in real samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2020.06.037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!