Exosomes, including human melanoma-derived exosomes (HMEX), are known to suppress the function of immune effector cells, which for HMEX has been associated with the surface presence of the immune checkpoint ligand PD-L1. This study investigated the relationship between the BRAF mutational status of melanoma cells and the inhibition of secreted HMEX exosomes on antigen-specific human T cells. Exosomes were isolated from two melanoma cell lines, 2183-Her4 and 888-mel, which are genetically wild-type BRAF and BRAF, respectively. HMEX were isolated using a modified, size-exclusion chromatography (SEC) method shown to reduce co-isolation of non-exosome-associated cytokines compared to ultracentrifugation isolation. The immunoinhibitory effect of the exosomes was tested in vitro on patient-derived NY-ESO-1-specific CD8 T cells challenged with NY-ESO-1 antigen. HMEX from both cell lines inhibited the immune response of antigen-specific T cells comparably, as evidenced by the reduction of IFN-γ and TNF-α in NY-ESO-1 tetramer-positive cells. This inhibition could be partially reversed by the presence of anti-PD-L1 and anti-IL-10 antibodies. IL-10 has been demonstrated to be a critical pathway for sustaining enhanced tumorigenesis in BRAF mutant cells compared to BRAF melanoma cells. Thus, we demonstrate that HMEX inhibit antigen-specific T cell responses independent of the BRAF mutational status of the parent cells. In addition, PD-L1 and IL-10 contribute to the HMEX-mediated immunosuppression of antigen-specific human T cells. The inhibitory capacity of exosomes should be taken into consideration when developing therapies that are reliant upon the potency of customized, antigen-specific effector T cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816128 | PMC |
http://dx.doi.org/10.1080/08820139.2020.1803353 | DOI Listing |
ACS Nano
January 2025
Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
Melanoma is the most aggressive type of skin cancers. Traditional chemotherapy and radiotherapy have limited effectiveness and can lead to systemic side effects. Photodynamic therapy (PDT) is a photoresponsive cancer therapy based on photosensitizers to generate reactive oxygen species (ROS) to eradicate tumor cells.
View Article and Find Full Text PDFPharmaceutics
January 2025
Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
: is the leading cause of chronic gastritis, peptic ulcer, gastric adenocarcinoma, and mucosal-associated lymphoma. Due to the emerging problems with antibiotic treatment against in clinical practice, vaccination has gained more interest. Oral immunization is considered a promising approach for preventing initial colonization of this bacterium in the gastrointestinal tract, establishing a first line of defense at gastric mucosal surfaces.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany.
Background/objectives: MDG1011 is an autologous TCR-T therapy developed as a treatment option for patients with myeloid malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). It is specific for the target antigen PReferentially expressed Antigen in MElanoma (PRAME). The recombinant TCR used in MDG1011 recognizes PRAME VLD-peptide presented by HLA-A*02:01-encoded surface molecules.
View Article and Find Full Text PDFDendritic cells connect innate and adaptive immune responses. This is a particularly important immune checkpoint in the case of emerging infections against which most of the population does not have preexisting antibody immunity. In this study, we sought to test whether antibody-based delivery of Ebola virus (EBOV) antigens to dendritic cells could be used as a vaccination strategy against Ebola virus disease.
View Article and Find Full Text PDFCells
January 2025
Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Turner syndrome (TS) can be determined by karyotype analysis, marked by the loss of one X chromosome in females. However, the genes involved in autoimmunity in TS patients remain unclear. In this study, we aimed to analyze differences in immune gene expression between a patient with TS, a healthy female, and a female patient with Graves' disease using single-cell RNA sequencing (scRNA-seq) analysis of antigen-specific CD4(+) T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!