Tridentate aroyl hydrazones are effective metal chelators in biological settings, and their activity has been investigated extensively for medicinal applications in metal overload, cancer, and neurodegenerative diseases. The aroyl hydrazone motif is found in the recently reported prochelator (AH1-S), which has shown antiproliferative proapoptotic activity in mammalian cancer cell lines. Intracellular reduction of this disulfide prochelator leads to the formation of mercaptobenzaldehyde benzoylhydrazone chelator AH1 and to iron sequestration, which in turn impacts cell growth. Herein, we investigate the iron coordination chemistry of AH1 to determine the structural and spectroscopic properties of the iron complexes in the solid state and in solution. A neutral iron(III) complex of 2:1 ligand-to-metal stoichiometry was isolated and characterized fully to reveal two different binding modes for the tridentate AH1 ligand. Specifically, one ligand binds in the monoanionic keto form, whereas the other ligand coordinates as a dianionic enolate. Continuous-wave electron paramagnetic resonance experiments in frozen solutions indicated that this neutral complex is one of three low-spin iron(III) complexes observed depending on the pH of the solution. Electron spin echo envelope modulation (ESEEM) experiments allowed assignment of the three species to different protonation states of the coordinated ligands. Our ESEEM analysis provides a method to distinguish the coordination of aroyl hydrazones in the keto and enolate forms, which influences both the ligand field and overall charge of the complex. As such, this type of analysis could provide valuable information in a variety of studies of iron complexes of aroyl hydrazones, ranging from the investigation of spin-crossover behavior to tracking of their distribution in biological samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223696 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.0c01120 | DOI Listing |
Molecules
January 2025
Department of Chemistry, Fudan University, Shanghai 200438, China.
This review highlights significant advances in iron-catalyzed cross-dehydrogenative coupling (CDC), a method pivotal for forming carbon-carbon (C-C) bonds directly from C-H bonds. This technique uses iron-a naturally abundant, inexpensive, and environmentally benign transition metal-as a catalyst to facilitate the coupling of two unfunctionalized C-H bonds. This method stands out for avoiding pre-functionalized substrates, reducing both waste and cost in organic synthesis.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China.
Desalinating seawater is a crucial method for addressing the shortage of freshwater resources. High-efficiency, low-cost, and environmentally friendly desalination technologies are key issues that urgently need to be addressed. This work used as a matrix material and prepared @Fe-GA through a complexation reaction to enhance the water evaporation rate and photothermal conversion efficiency of seawater desalination.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania.
There is a growing focus on sustainability, characterized by making changes that anticipate future needs and adapting them to present requirements. Sustainability is reflected in various areas of materials science as well. Thus, more research is focused on the fabrication of advanced materials based on earth-abundant metals.
View Article and Find Full Text PDFMicroorganisms
January 2025
State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
Phenolic compounds are industrially versatile chemicals that have been successfully produced in microbial cell factories. Unfortunately, most phenolic compounds are highly toxic to cells in specific cellular environments or above a particular concentration because they form a complex with iron and promote hydroxyl radical production in Fenton reactions, resulting in the ferroptosis of cells. Here, we demonstrated that overexpression of efflux pumps and porins, including porins LamB and OmpN, and efflux pumps EmrAB, MdtABC, and SrpB, can enhance phloroglucinol (PG) tolerance by inhibiting the generation of hydroxyl radicals.
View Article and Find Full Text PDFMicroorganisms
January 2025
VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic.
Daunomycin is a chemotherapeutic agent widely used for the treatment of leukemia, but its toxicity toward healthy dividing cells limits its clinical use and its production by fermentation. Herein, we describe the development of a specialized cultivation medium for daunomycin production, including a shift to oil rather than sugar as the primary carbon source. This achieved an almost threefold increase in daunomycin yields, reaching 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!