Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metal borohydrides are a fascinating and continuously expanding class of materials, showing promising applications within many different fields of research. This study presents 17 derivatives of the hydrogen-rich ammonium borohydride, NHBH, which all exhibit high gravimetric hydrogen densities (>9.2 wt % of H). A detailed insight into the crystal structures combining X-ray diffraction and density functional theory calculations exposes an intriguing structural variety ranging from three-dimensional (3D) frameworks, 2D-layered, and 1D-chainlike structures to structures built from isolated complex anions, in all cases containing NH countercations. Dihydrogen interactions between complex NH and BH ions contribute to the structural diversity and flexibility, while inducing an inherent instability facilitating hydrogen release. The thermal stability of the ammonium metal borohydrides, as a function of a range of structural properties, is analyzed in detail. The Pauling electronegativity of the metal, the structural dimensionality, the dihydrogen bond length, the relative amount of NH to BH, and the nearest coordination sphere of NH are among the most important factors. Hydrogen release usually occurs in three steps, involving new intermediate compounds, observed as crystalline, polymeric, and amorphous materials. This research provides new opportunities for the design and tailoring of novel functional materials with interesting properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c01797 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!