Selectively Enhancing Solar Scattering for Direct Radiative Cooling through Control of Polymer Nanofiber Morphology.

ACS Appl Mater Interfaces

Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States.

Published: September 2020

Radiative cooling can alleviate urban heat island effects and passively improve personal thermal comfort. Among many emerging approaches, infrared (IR) transparent films and fabrics are promising because they can allow objects to directly radiate heat through bands of atmospheric transparency while blocking solar heating. However, achieving high solar reflectance while maintaining IR transmittance using scalable nanostructured materials requires control over the shape and size distribution of the nanoscale building blocks. Here, we investigate the scattering and transmission properties of electrospun polyacrylonitrile (PAN) nanofibers that feature spherical, ellipsoidal, and cylindrical morphologies. We find that nanofibers that have ellipsoidal beads exhibit the most efficient solar scattering, mainly due to the additive dielectric resonances of the ellipsoidal and cylindrical geometries, as confirmed through electromagnetic simulations. This favorable scattering decreases the amount of material needed to reach above 95% solar reflectance, which, in turn, enables high infrared transmittance (>70%) despite PAN's intrinsic IR absorption. We further show that these PAN nanofibers (nanoPAN) can enable cooling of surfaces with relatively low solar reflectance, which is demonstrated by covering a reference blackbody surface with beaded nanoPAN. During peak solar hours, this configuration lowers the temperature of the black surface by approximately 50 °C and is able to achieve as low as 3 °C below the ambient air temperature. More broadly, our demonstration using PAN, which is not as IR transparent as more commonly used polyethylene, provides a method for utilizing lower purity materials in radiative cooling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c09374DOI Listing

Publication Analysis

Top Keywords

radiative cooling
12
solar reflectance
12
solar scattering
8
pan nanofibers
8
ellipsoidal cylindrical
8
solar
7
selectively enhancing
4
enhancing solar
4
scattering
4
scattering direct
4

Similar Publications

The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.

View Article and Find Full Text PDF

Radiative Cooling Meta-Fabric Integrated with Knitting Perspiration-Wicking and Coating Heat Conduction.

ACS Nano

January 2025

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.

View Article and Find Full Text PDF

High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.

View Article and Find Full Text PDF

A Theoretical Study on Crossings Among Electronically Excited States and Laser Cooling of Group VIA (S, Se, and Te) Hydrides.

J Comput Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Various electronically excited states and the feasibility of direct laser cooling of SH, SeH, and TeH are investigated using the highly accurate ab initio and dynamical methods. For the detailed calculations of the seven low-lying Λ-S states of SH, we utilized the internally contracted multireference configuration interaction approach, considering the spin-orbit coupling (SOC) effects. Our calculated spectroscopic constants are in very good agreement with the available experimental results.

View Article and Find Full Text PDF

The 1831 CE mystery eruption identified as Zavaritskii caldera, Simushir Island (Kurils).

Proc Natl Acad Sci U S A

January 2025

Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University, Belfast BT9 3AZ, United Kingdom.

Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma-crust interactions with evaporite rocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!