The mechanisms and biological functions of migrating platelets in cancer remain largely unknown. Here, we analyzed platelet infiltration in hepatocellular carcinoma. We detected platelet extravasation in both mouse and human HCC tissues. CX3CL1 directly induced platelet migration, and hypoxia enhanced platelet migration by upregulating CX3CL1 expression. Knocking down CX3CL1 in HCC cells reduced platelet migration in vitro, as well as infiltration of HCC tissue in an orthotopic HCC mouse model. Components of the CX3CR1/Syk/PI3K pathway were essential for CX3CL1-induced platelet migration. Migrating platelets induced HCC cell apoptosis in vitro, as indicated by a reduced mitochondrial membrane potential and an increased percentage of apoptotic cells. In the orthotopic tumor implantation model, decreased platelet infiltration was associated with accelerated tumor growth. Taken together, our findings indicate that HCC cell-derived CX3CL1 contributes to tumor infiltration by platelets, which in turn promotes apoptosis of HCC cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530782PMC
http://dx.doi.org/10.1002/1878-0261.12783DOI Listing

Publication Analysis

Top Keywords

platelet migration
16
hepatocellular carcinoma
8
cell apoptosis
8
migrating platelets
8
platelet infiltration
8
hcc cells
8
platelet
7
hcc
7
platelets
4
platelets recruited
4

Similar Publications

Annexin A1: The dawn of ischemic stroke (Review).

Mol Med Rep

March 2025

Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China.

Ischemic stroke is a prevalent clinical condition that poses a significant global challenge. Developing innovative strategies to address this issue is crucial. Annexin A1 (ANXA1), a key member of the annexin superfamily, performs various functions, such as inhibiting inflammatory factor release, promoting phagocytosis, and blocking leukocyte migration.

View Article and Find Full Text PDF

A Recombinant Human Collagen and RADA-16 Fusion Protein Promotes Hemostasis and Rapid Wound Healing.

ACS Appl Bio Mater

December 2024

Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.

In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.

View Article and Find Full Text PDF

Platelet Membrane-Coated HGF-PLGA Nanoparticles Promote Therapeutic Angiogenesis and Tissue Perfusion Recovery in Ischemic Hindlimbs.

ACS Appl Bio Mater

December 2024

Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing 100730, China.

Therapeutic angiogenesis has garnered significant attention as a potential treatment strategy for lower limb ischemic diseases. Although hepatocyte growth factor (HGF) has been identified as a key promoter of therapeutic angiogenesis, its clinical application is limited due to its short half-life. In this study, we successfully developed and characterized platelet membrane-coated HGF-poly(lactic--glycolic acid) (PLGA) nanoparticles (NPs).

View Article and Find Full Text PDF

This study investigates platelet-related subtypes in non-small cell lung cancer (NSCLC) and seeks to identify genes associated with prognosis, focusing on the clinical significance of the chloride ion channel gene BEST3. We utilised sequencing and clinical data from GEO, TCGA and the Xena platform, building a risk model based on genetic features. TCGA and GSE37745 served as training cohorts, while GSE50081, GSE13213, GSE30129 and GSE42127 were validation cohorts.

View Article and Find Full Text PDF

Background: Bronchopulmonary dysplasia (BPD), a chronic lung disease prevalent among premature infants, significantly impacts lifelong respiratory health. Macrophages, as key components of the innate immune system, play a role in lung tissue inflammation and injury, exhibiting diverse and dynamic functionalities. The M4 macrophage, a distinctive subtype primarily triggered by chemokine (C-X-C motif) ligand 4 (CXCL4), has been implicated in pulmonary inflammatory and fibrotic processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!