Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a novel regularized mixture model for clustering matrix-valued data. The proposed method assumes a separable covariance structure for each cluster and imposes a sparsity structure (eg, low rankness, spatial sparsity) for the mean signal of each cluster. We formulate the problem as a finite mixture model of matrix-normal distributions with regularization terms, and then develop an expectation maximization type of algorithm for efficient computation. In theory, we show that the proposed estimators are strongly consistent for various choices of penalty functions. Simulation and two applications on brain signal studies confirm the excellent performance of the proposed method including a better prediction accuracy than the competitors and the scientific interpretability of the solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884484 | PMC |
http://dx.doi.org/10.1111/biom.13354 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!