Next-generation sequencing strategies have resulted in mutation detection rates of 21% to 61% in small cohorts of patients with microphthalmia, anophthalmia and coloboma (MAC), but despite progress in identifying novel causative genes, many patients remain without a genetic diagnosis. We studied a cohort of 19 patients with MAC who were ascertained from a population with high rates of consanguinity. Using single nucleotide polymorphism (SNP) arrays and whole exome sequencing (WES), we identified one pathogenic variant in TENM3 in a patient with cataracts in addition to MAC. We also detected novel variants of unknown significance in genes that have previously been associated with MAC, including KIF26B, MICU1 and CDON, and identified variants in candidate genes for MAC from the Wnt signaling pathway, comprising LRP6, WNT2B and IQGAP1, but our findings do not prove causality. Plausible variants were not found for many of the cases, indicating that our current understanding of the pathogenesis of MAC, a highly heterogeneous group of ocular defects, remains incomplete.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8077035PMC
http://dx.doi.org/10.1111/cge.13830DOI Listing

Publication Analysis

Top Keywords

exome sequencing
8
patients microphthalmia
8
microphthalmia anophthalmia
8
anophthalmia coloboma
8
coloboma mac
8
mac
7
patients
4
sequencing patients
4
mac consanguineous
4
consanguineous population
4

Similar Publications

BACKGROUND Cleidocranial dysplasia (CCD) is a rare (1: 1 000 000) autosomal dominant congenital skeletal dysplasia characterized by widely patent calvarial sutures, clavicular hypoplasia, supernumerary teeth, and short stature. Only a minority of the cases are diagnosed early after birth. We present another case of proven CCD presenting with typical neonatal phenotype to promote awareness of this rare disorder.

View Article and Find Full Text PDF

Hepatoblastoma in a patient with neurofibromatosis type 1: A case report.

Cancer Genet

January 2025

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France; UMR 1231 GAD, INSERM, Université de Bourgogne, Franche Comté, Dijon, France.

Background: Neurofibromatosis type 1 (NF1) is one of the most common genodermatoses. It can affect every organ and is associated with an increased risk of benign and malignant tumors. Most common tumoral locations involve nervous system and soft tissues but a large variety of tumors have been described.

View Article and Find Full Text PDF

Oocyte maturation arrest (OMA) may occur at different stages, including the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). A total maturation arrest of human oocytes is rarely observed during fertilization (IVF). We have identified a case of infertile female for whom all oocytes fail to mature and are arrested at MI.

View Article and Find Full Text PDF

Pathogenic variants in , encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo variant identified by whole exome sequencing performed more than 10 years after the patient's death.

View Article and Find Full Text PDF

A Haplotype GWAS in Syndromic Familial Colorectal Cancer.

Int J Mol Sci

January 2025

Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden.

A previous genome-wide association study (GWAS) in colorectal cancer (CRC) patients with gastric and/or prostate cancer in their families suggested genetic loci with a shared risk for these three cancers. A second haplotype GWAS was undertaken in the same colorectal cancer patients and different controls with the aim of confirming the result and finding novel loci. The haplotype GWAS analysis involved 685 patients with colorectal cancer cases and 1642 healthy controls from Sweden.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!