Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Thermally treated candle soot (TCS) was used as a two-electron (2e¯) oxygen reduction reaction (ORR) catalyst to in situ produce HO in a bio-electro-Fenton (BEF) system. Compared with the pristine candle soot (CS), TCS showed larger Brunauer-Emmett-Teller (BET) surface area (102.54 m g vs. 61.79 m g), higher mesoporous ratio (50.39% vs. 34.98%), and improved hydrophilicity. X-ray photoelectron spectra (XPS) results revealed that the C-O-C was the dominant oxygen-containing group of the CS, and its percentage reached at 80.55%. However, the C-O-C ratio of the TCS decreased to 48.93%, whilst it's CO and OC-O ratios significantly increased to 27.92% and 23.15%. The TCS showed a high HO selectivity (87.5%∼97.0%) at the neutral pH condition, which was much higher than that of the commonly used carbon black (CB) catalyst. Finally, the HO concentration maxima (C-) of the bio-electro-Fenton system running with the TCS air-cathode (BEF-TCS) achieved at 32.02 mg/L, which was 6.29 times higher than that of the BEF-CB (5.09 mg/L). The removal and mineralization ratios of the SMX in the BEF-TCS reached at 83.0% and 79.0%, respectively. This paper reported a novel 2e¯ ORR electro-catalyst which was low-cost, easily available and highly efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.127839 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!