Modeling the Control of TGF-β/Smad Nuclear Accumulation by the Hippo Pathway Effectors, Taz/Yap.

iScience

Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada. Electronic address:

Published: August 2020

Integration of transforming growth factor β (TGF-β) signals with those of other pathways allows for precise temporal and spatial control of gene expression patterns that drive development and homeostasis. The Hippo pathway nuclear effectors, Taz/Yap, interact with the TGF-β transcriptional mediators, Smads, to control Smad activity. Key to TGF-β signaling is the nuclear localization of Smads. Thus, to investigate the role of Taz/Yap in Smad nuclear accumulation, we developed mathematical models of Hippo and TGF-β cross talk. The models were based on experimental measurements of TGF-β-induced changes in Taz/Yap and Smad subcellular localization obtained using high-throughput immunofluorescence (IF) imaging in the mouse mammary epithelial cell line, EpH4. Bayesian MCMC DREAM parameter estimation was used to quantify the uncertainty in estimates of the kinetic parameters. Variation of the model parameters and statistical analysis show that our modeling predicts that Taz/Yap can alter TGF-β receptor activity and directly or indirectly act as nuclear retention factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452192PMC
http://dx.doi.org/10.1016/j.isci.2020.101416DOI Listing

Publication Analysis

Top Keywords

nuclear accumulation
8
hippo pathway
8
effectors taz/yap
8
taz/yap smad
8
nuclear
5
taz/yap
5
tgf-β
5
modeling control
4
control tgf-β/smad
4
tgf-β/smad nuclear
4

Similar Publications

In Alzheimer's disease (AD), amyloid-β (Aβ) triggers the aggregation and spreading of tau pathology, which drives neurodegeneration and cognitive decline. However, the pathophysiological link between Aβ and tau remains unclear, which hinders therapeutic efforts to attenuate Aβ-related tau accumulation. Aβ has been found to trigger neuronal hyperactivity and hyperconnectivity, and preclinical research has shown that tau spreads across connected neurons in an activity-dependent manner.

View Article and Find Full Text PDF

Depressive Symptoms and Amyloid Pathology.

JAMA Psychiatry

January 2025

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.

Importance: Depressive symptoms are associated with cognitive decline in older individuals. Uncertainty about underlying mechanisms hampers diagnostic and therapeutic efforts. This large-scale study aimed to elucidate the association between depressive symptoms and amyloid pathology.

View Article and Find Full Text PDF

Erdheim Chester Disease with Calvarial Involvement: A rare case of Histiocytosis.

Turk Neurosurg

March 2024

SBÜ Gaziosmanpaşa Eğitim ve Araştırma Hastanesi.

Erdheim-Chester Disease is a rare systemic xanthogranulomatous infiltrating disease, characterized by lipid-laden histiocytes accumulating in various organs and almost always in bones. Etiology of the disease is still unknown. It may involve various organs and systems, such as musculoskeletal, cardiac, pulmonary, renal, gastrointestinal and central nervous system (CNS) as well as the skin.

View Article and Find Full Text PDF

Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification.

Circ Res

January 2025

British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).

Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.

Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.

View Article and Find Full Text PDF

Elafibranor: A promising therapeutic approach for liver fibrosis and gut barrier dysfunction in alcohol-associated liver disease.

World J Gastroenterol

January 2025

Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan.

This article discusses the recent study written by Koizumi . Alcohol-associated liver disease (ALD) is a major cause of liver-related morbidity and mortality, which is driven by complex mechanisms, including lipid accumulation, apoptosis, and inflammatory responses exacerbated by gut barrier dysfunction. The study explored the therapeutic potential of elafibranor, a dual peroxisome proliferator-activated receptor alpha/delta agonist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!