A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: Implications for sustainable agricultural management in seasonally frozen land. | LitMetric

Agricultural soil contamination in seasonally frozen land threatens food security. It is necessary to investigate the effects of freeze-thaw cycles on heavy metal bioavailability so as to select suitable immobilization agents. In this study, the soil was collected from a mid-latitude agricultural site in Liaoning Province, China, which was spiked with cadmium (Cd) and lead (Pb). Four immobilization treatments were set up, including (i) corn stover biochar, (ii) organic fertilizer, (iii) combined biochar and organic fertilizer, and (iv) the control group. The immobilized soils were subjected to 16 freeze-thaw cycles to temperatures of -10 °C, -20 °C, and -30 °C. It was found that freeze-thaw cycling increased the labile cadmium (Cd) and lead (Pb) content in the soil (i.e., exchangeable). The organic fertilizer treatment performed best in short-term immobilization, which was demonstrated by the amount of diethylenetriaminepentaacetic acid (DTPA) extractable lead (Pb) being 17.3-53.3% lower than that of the other treatments, and 7.2-31.5% lower for cadmium (Cd). Biochar, on the other hand, displayed better long-term performance under freeze-thaw cycling. This is probably because the biochar's organic carbon content is relatively stable, and therefore, releases relatively little dissolved organic carbon (DOC) which could re-mobilize heavy metals. Furthermore, additional sorption sites are formed and the abundance of oxygen-containing functional groups increased when biochar breaks down during freeze-thaw cycles. Overall, the joint application of biochar and organic fertilizer had the greatest immobilization effect, which inhibited the cracking of soil aggregates, reduced the labile metal content, and displayed both short- and long-term immobilization effectiveness. It is suggested that combined biochar and organic fertilizer may offer an effective strategy for the sustainable agricultural management of cadmium (Cd) and lead (Pb) contaminated in seasonally frozen land.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2020.106040DOI Listing

Publication Analysis

Top Keywords

organic fertilizer
20
freeze-thaw cycles
16
biochar organic
16
seasonally frozen
12
frozen land
12
cadmium lead
12
sustainable agricultural
8
agricultural management
8
combined biochar
8
freeze-thaw cycling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!