Variational graph auto-encoders for miRNA-disease association prediction.

Methods

Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada. Electronic address:

Published: August 2021

Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and in the development of numerous complex human diseases. Thus, exploring the relationships between miRNAs and diseases is helpful with understanding the mechanisms, the detection, diagnosis, and treatment of complex diseases. As the identification of miRNA-disease associations via traditional biological experiments is time-consuming and expensive, an effective computational prediction method is appealing. In this study, we present a deep learning framework with variational graph auto-encoder for miRNA-disease association prediction (VGAE-MDA). VGAE-MDA first gets the representations of miRNAs and diseases from the heterogeneous networks constructed by miRNA-miRNA similarity, disease-disease similarity, and known miRNA-disease associations. Then, VGAE-MDA constructs two sub-networks: miRNA-based network and disease-based network. Combining the representations based on the heterogeneous network, two variational graph auto-encoders (VGAE) are deployed for calculating the miRNA-disease association scores from two sub-networks, respectively. Lastly, VGAE-MDA obtains the final predicted association score for a miRNA-disease pair by integrating the scores from these two trained networks. Unlike the previous model, the VGAE-MDA can mitigate the effect of noises from random selection of negative samples. Besides, the use of graph convolutional neural (GCN) network can naturally incorporate the node features from the graph structure while the variational autoencoder (VAE) makes use of latent variables to predict associations from the perspective of data distribution. The experimental results show that VGAE-MDA outperforms the state-of-the-art approaches in miRNA-disease association prediction. Besides, the effectiveness of our model has been further demonstrated by case studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2020.08.004DOI Listing

Publication Analysis

Top Keywords

mirna-disease association
16
variational graph
12
association prediction
12
graph auto-encoders
8
mirnas diseases
8
mirna-disease associations
8
mirna-disease
7
vgae-mda
6
association
5
variational
4

Similar Publications

As an increasing number of microRNAs (miRNAs) have become biomarkers of various human diseases, prediction of the candidate disease-related miRNAs is helpful for facilitating the early diagnosis of diseases. Most of the recent prediction models concentrated on learning of the features from the heterogeneous graph composed of miRNAs and diseases. However, they failed to fully exploit the subgraph structures consisting of multiple miRNA and disease nodes, and they also did not completely integrate the context relationships among the pairwise features.

View Article and Find Full Text PDF

Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association.

Biomedicines

January 2025

Major of Big Data Convergence, Division of Data Information Science, Pukyong National University, Busan 48513, Republic of Korea.

Over the past few decades, micro ribonucleic acids (miRNAs) have been shown to play significant roles in various biological processes, including disease incidence. Therefore, much effort has been devoted to discovering the pivotal roles of miRNAs in disease incidence to understand the underlying pathogenesis of human diseases. However, identifying miRNA-disease associations using biological experiments is inefficient in terms of cost and time.

View Article and Find Full Text PDF

Background: miRNAs (microRNAs) are endogenous RNAs with lengths of 18 to 24 nucleotides and play critical roles in gene regulation and disease progression. Although traditional wet-lab experiments provide direct evidence for miRNA-disease associations, they are often time-consuming and complicated to analyze by current bioinformatics tools. In recent years, machine learning (ML) and deep learning (DL) techniques are powerful tools to analyze large-scale biological data.

View Article and Find Full Text PDF

MiRNAs and lncRNAs are two essential noncoding RNAs. Predicting associations between noncoding RNAs and diseases can significantly improve the accuracy of early diagnosis.With the continuous breakthroughs in artificial intelligence, researchers increasingly use deep learning methods to predict associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!