Baloxavir, a new antiviral drug targeting cap-dependent endonuclease activity of polymerase acidic (PA) protein of influenza viruses, is now approved in multiple countries. Several substitutions at isoleucine 38 in PA protein (e.g., PA-I38T) have been associated with decreased baloxavir susceptibility in vitro and in vivo. In recent years, next generation sequencing (NGS) analysis and pyrosequencing have been used by CDC and U.S. Public Health Laboratories to monitor drug susceptibility of influenza viruses. Here we described an improved pyrosequencing assay for detecting influenza A viruses carrying substitutions at PA-38. Cyclic and customized orders of nucleotide dispensation were evaluated, and pyrosequencing results were compared to those generated using NGS. Our data showed that the customized nucleotide dispensation has improved the pyrosequencing assay performance in identification of double mixtures (e.g., PA-38I/T); however, identification of PA-38 variants in triple mixtures remains a challenge. While NGS analysis indicated the presence of PA-I38K in one clinical specimen and isolate, our attempts to detect this mutation by pyrosequencing or recover the virus carrying PA-I38K in cell culture were unsuccessful, raising a possibility of a rarely occurring sequencing error. Overall, pyrosequencing provides a convenient means to detect baloxavir resistant influenza viruses when NGS is unavailable or a faster turnaround time is required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426223 | PMC |
http://dx.doi.org/10.1016/j.antiviral.2020.104906 | DOI Listing |
Semin Respir Crit Care Med
January 2025
Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.
In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), , (), , and . Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host-microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
National Influenza Centre, Edificio Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.
Influenza accounts for 30% of the total morbidity and mortality in the European Union. However, the specific burden in different European countries is largely unknown, and more research is needed to ascertain the reality of this disease. In this retrospective study, we analyzed the burdens of hospitalization, intensive care unit (ICU) admission and in-hospital mortality in Spain over five seasons (2015-2020) via publicly available Minimum Basic Datasets (MDBS).
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Human Link, Dubai, United Arab Emirates.
Reassortant highly pathogenic avian influenza A(H5N2) clade 2.3.4.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.
Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.
View Article and Find Full Text PDFJ Virol
January 2025
MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!