Both the total amount of biothiols and thiol/disulfide ratio are wellness indicators of oxidative balance that play an important role in antioxidant defense system. Oxidized biothiols in disulfide form cannot be determined by conventional ABTS assay due to the biphasic kinetic pattern of the reaction between biothiols and ABTS radical cation (ABTS), necessitating the initial reduction of disulfides to thiols prior to measurement. In this study, direct simultaneous determination of biothiols (RSH) and their disulfides (RSSR) by using a single reagent of ABTS was achieved without preliminary chemical reduction. Thus, conventional problems of preliminary operations arising from direct borohydride reduction of disulfides to thiols, followed by formaldehyde removal of borohydride excess and complications caused by formaldehyde-thiol reactions were effectively overcome with the use of a single reagent (ABTS). Box-Behnken statistical experimental design was employed to specify the optimal incubation temperature and time as 60 °C and 60 min, respectively. The detection limits (LOD) of the proposed assay for biothiols were compared to those of the widely used DTNB (Ellman) reference assay known to be nonresponsive to disulfides, and were found to be much lower (4-70 times). The proposed biothiol assay was successfully applied to some pharmaceutical samples and synthetic serum without preliminary treatment, and the results were highly compatible with the HPLC findings. The proposed assay was demonstrated to have superior features such as simplicity, rapidity and higher sensitivity over the widely applied Ellman thiols assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2020.121212 | DOI Listing |
Curr Oncol
December 2024
Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
Focal therapy offers a promising approach for treating localized prostate cancer (PC) with minimal invasiveness and potential cost benefits. High-intensity focused ultrasound (HIFU) and brachytherapy (BT) are among these options but lack long-term efficacy data. Patient follow-ups typically use biopsies and multiparametric MRI (mpMRI), which often miss recurrences.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Department of Cardiac Sciences, University of Calgary and Libin Cardiovascular Institute, Calgary, AB, Canada.
Purpose Of Review: This review evaluates recent advancements in Technetium-99 m pyrophosphate (99mTc-PYP) imaging for transthyretin amyloid cardiomyopathy (ATTR-CM). We summarize the advantages of single-photon emission computed tomography (SPECT) over planar imaging, the potential impact of quantitative methods, and emerging data for quantifying response to therapy.
Recent Findings: The current literature demonstrates the superior diagnostic accuracy of SPECT compared with planar imaging in 99mTc-PYP studies.
Luminescence
January 2025
Department of Display Science and Engineering, Pukyong National University, Busan, Republic of Korea.
The influence of Eu concentration on the crystal structure and photoluminescence (PL) properties of Ca(PO):xEu (0.06 ≤ x ≤ 0.10) phosphors is systematically investigated using X-ray diffraction (XRD) Rietveld refinement, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, UV-visible spectroscopy, and PL spectroscopy.
View Article and Find Full Text PDFSe Pu
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!