We report on a comparative study of the basic separation kinetics of commercial packed bed columns and a micro-pillar array column (μPAC) working in the 1-10μL/min flow rate range, i.e., operating in the area of capillary flow LC. This is done using a basic test mixture of 8 alkylphenones under both isocratic and gradient separation conditions. Care was taken the μPAC and the packed bed columns have similar volumes (around 10μL) and hence also similar t-times when compared at the same flow rate. In addition, the isocratic mobile phase composition and gradient programs were selected such to have similar elution windows (in absolute times) for all 4 column types. It was found that the μPAC produces significantly more theoretical plates (up to 3 times) in the 1-4μL/min range, while, the packed bed columns perform better at the higher flow rates because of the relatively large inter-pillar distance in the μPAC. Under gradient conditions, the μPAC produces a clearly higher peak capacity than any of the three packed bed columns over the entire range of investigated flow rates, albeit that this is also partly to be owed to the steeper gradient that needed to be used in the μPAC in order to maintain a similar elution window on all columns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2020.461279DOI Listing

Publication Analysis

Top Keywords

packed bed
16
bed columns
16
capillary flow
8
micro-pillar array
8
flow rate
8
μpac produces
8
flow rates
8
flow
6
columns
6
μpac
6

Similar Publications

Mechanism, Performance, and Application of g-CN-Coupled TiO as an S-Scheme Heterojunction Photocatalyst for the Abatement of Gaseous Benzene.

ACS Appl Mater Interfaces

January 2025

Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.

In this research, S-scheme heterojunction photocatalysts are prepared through the hybridization of nitrogen-rich g-CN with TiO (coded as TCN-(): as the weight ratio of TiO:g-CN). The photocatalytic potential of TCN-() is evaluated against benzene (1-5 ppm) across varying humidity levels using a dynamic flow packed-bed photocatalytic reactor. Among the prepared composites, TCN-(10) exhibits the highest synergy between g-CN and TiO at "" ratio of 10%, showing superior best benzene degradation performance (e.

View Article and Find Full Text PDF

This study demonstrated a novel approach to accurately estimate 5-day biochemical oxygen demand (BOD) in textile wastewater using a microbial consortium from food processing wastewater fixed on coconut fibers. Although glucose-glutamic acid (GGA) has been widely known as the most preferred substrates for microbial respiration, its calibration surprisingly resulted in an overestimation of BOD in textile wastewater due to its lower utilization rate compared to that of textile wastewater. After being adapted with a new nutrient environment composed of GGA and textile wastewater, the adapted packed-bed bioreactors (PBBRs) was capable of accurate estimation of BOD in textile wastewater using GGA standard solution.

View Article and Find Full Text PDF

Evaluation of Almond Shell Activated Carbon for Dye (Methylene Blue and Malachite Green) Removal by Experimental and Simulation Studies.

Materials (Basel)

December 2024

Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa S/N, 15782 Santiago de Compostela, Spain.

The present work analyzes the behavior of an activated carbon fabricated from almond shells for the removal of cationic dyes (methylene blue, MB, and malachite green, MG) by adsorption from aqueous solutions. The carbonized precursor was activated with KOH at a 1:2 (/) ratio with the objective of increasing both the surface area and the pore volume. Both non-activated and activated carbon were characterized in different aspects of interest in dye adsorption studies (surface structure, point of zero charge, specific surface area, and pore size distribution).

View Article and Find Full Text PDF

Surface Complexation and Packed Bed Mass Transport Models Enable Adsorbent Design for Arsenate and Vanadate Removal.

ACS ES T Eng

October 2024

School of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States of America.

Article Synopsis
  • Co-occurrence of metal oxo-anions like arsenate in drinking water can be harmful to human health, motivating the study of how to better predict their behavior in adsorption systems.
  • By integrating surface complexation models with pore surface diffusion models, researchers accurately predicted the adsorption behaviors of single and mixed solutes, helping to understand how different adsorbents interact with these contaminants.
  • The findings emphasized that enhancing the capacity and reactivity of adsorbents is more effective for improving water purification systems than merely focusing on pore design to minimize transport limitations.
View Article and Find Full Text PDF

The sulfur-containing chemical warfare agents sulfur mustard HD and nerve agent VX are highly toxic and persistent in the environment. Therefore, their neutralisation requires harsh oxidation conditions, but also precise selectivity. Here we report the safe and effective detoxification of surrogates CEES and PhX by selective oxidation of the sulfur atom by generating peracetic acid from AcOEt and aq.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!