Introduction: Xanthine oxidase (XO) is a molybdoflavoprotein that catalyzes the oxidative hydroxylation of purines to produce uric acid and reactive oxygen species. These reaction products can cause severe disease conditions like hyperuricemia which makes XO enzyme, an important therapeutic target in diseases like gout.
Areas Covered: Herein, patents from 2015 to 2020 are discussed to disclose the synthetic, as well as natural compounds, claimed to inhibit XO enzyme. The article also presents the last five years of clinical progression of some prominent XO inhibitors.
Expert Opinion: There has been considerable creativity in the discovery of novel XO inhibitors in the last five years that falls outside the purine scaffold. Along with the evaluation of synthetic compounds, natural compounds can also be an area of interest for the discovery of novel XO inhibitors. Based on the patent literature of last five years, we can expect a burst of novel alternate compounds in the near future which could have the ability to reduce the uric acid level, by inhibiting XO enzyme in patients, which at the moment are striving hard to fight against the dreadful disease condition like gout.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13543776.2020.1811233 | DOI Listing |
Int J Mol Sci
January 2025
Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
In this study, the antioxidant and prooxidant potency of protocatechuic aldehyde (PCA) was evaluated using density functional theory (DFT). The potency of direct scavenging of hydroperoxyl (HOO) and lipid peroxyl radicals (modeled by vinyl peroxyl, HC=CHOO) involved in lipid peroxidation was estimated. The repair of oxidative damage in biomolecules (lipids, proteins and nucleic acids) and the prooxidant ability of PCA phenoxyl radicals were considered.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
In this work, coixalkyne A (), a natural polynuclear calcium complex with a novel cross-shaped molecular architecture, was isolated from L. along with the undescribed analogue coixalkyne B (). Their structures were identified by means of NMR spectroscopy, ECD calculations, and single-crystal X-ray diffraction.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland.
Polyphenolic plant compounds possess nutritional and pro-healthy potential, reducing the risk of auto-inflammatory and neoplastic diseases. However, their interference with the progression of thyroid gland dysfunctions has remained largely unaddressed. For this purpose, we combined the analyses of phenolic content and antioxidative activity with the thyroid peroxidase (TPO), lipoxygenase (LOX), xanthine oxidase (XO) and cyclooxygenase-2 (COX-2) activity assays, isobolographic approach and the estimation of thyroid cancer cells' proliferation and motility in vitro.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India. Electronic address:
In this study, five seagrass species Halodule uninervis, Thalassia hemprichii, Enhalus acoroides, Cymodocea serrulata, and Syringodium isoetifolium collected from the Mandapam coastal region of Rameswaram (Palk Bay region), Tamil Nadu, India, were selected to identify the antioxidant-rich proteins/peptides. The primary objective was to identify the proteins/peptides present in these seagrass filtrates extracted by using four different pH-based buffer extracts and to assess their antioxidant activity. Among the various buffer extracts, 0.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China.
Purpose: Serum uric acid (SUA) is primarily produced through the hydrolysis of purines in the liver, with its excretion largely handled by the kidneys. Urate transporter 1 (URAT1) inhibitors are known to enhance uric acid elimination via the kidneys, but they also increase the risk of kidney stone formation. Currently, xanthine oxidase (XO) inhibitors are the predominant uric-lowering medications on the market.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!