A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Effect of Increasing Fracture Site Stiffness on Bone-Pin Interface Stress and Foot Contact Pressure within the Equine Distal Limb Transfixation Cast: A Finite Element Analysis. | LitMetric

The Effect of Increasing Fracture Site Stiffness on Bone-Pin Interface Stress and Foot Contact Pressure within the Equine Distal Limb Transfixation Cast: A Finite Element Analysis.

Vet Comp Orthop Traumatol

Department of Veterinary Clinical Sciences (Lescun, Adams, Breur), College of Veterinary Medicine; and the Schools of Mechanical and Biomedical Engineering (Nauman), College of Engineering, Purdue University, West Lafayette, Indiana, United States.

Published: September 2020

Objective:  The aim of this study was to determine how increasing stiffness of fracture site tissues distal to the pins in an equine distal limb transfixation cast influences stress at the bone-pin interface, within the bones distal to the transcortical pins, and contact pressure between the foot and the cast.

Study Design:  A transfixation cast finite element model was used to compare the bone-pin interface stress, pin stress, bone stress distal to the pins and contact pressure between the foot and the cast, using six stiffness values for a composite tissue block representing progressive stages of fracture healing.

Results:  Increasing stiffness of the composite tissue block resulted in a decrease in the maximum stresses at the bone-pin interface, an increase in stresses distal to the transcortical pins and a decrease in the maximum pin stresses. As the composite tissue block stiffness was increased, contact pressure between the bottom of the composite tissue block and the cast increased and the stress patterns surrounding the pin holes became less focal.

Conclusion:  The findings of this study illustrate that with good foot to cast contact within a transfixation cast, increases in tissue stiffness due to progressive fracture healing are expected to reduce bone-pin interface stresses, and increase fracture site loading and stress. Increasing the contact pressure between the foot and the cast could reduce transfixation casting complications such as pin loosening, pin hole fracture and poor fracture healing, if these results transfer to and settings.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0040-1714353DOI Listing

Publication Analysis

Top Keywords

bone-pin interface
20
contact pressure
20
transfixation cast
16
composite tissue
16
tissue block
16
fracture site
12
pressure foot
12
foot cast
12
interface stress
8
equine distal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!