In this paper, the hybrid β-GaO Schottky diodes were fabricated with PEDOT:PSS as the anode. The electrical characteristics were investigated when the temperature changes from 298 K to 423 K. The barrier height ϕ increases, and the ideality factor n decreases as the temperature increases, indicating the presence of barrier height inhomogeneity between the polymer and β-GaO interface. The mean barrier height and the standard deviation are 1.57 eV and 0.212 eV, respectively, after taking the Gaussian barrier height distribution model into account. Moreover, a relatively fast response speed of less than 320 ms, high reponsivity of 0.6 A/W, and rejection ratio of R/R up to 1.26 × 10 are obtained, suggesting that the hybrid PEDOT:PSS/β-GaO Schottky barrier diodes can be used as deep ultraviolet (DUV) optical switches or photodetectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427831 | PMC |
http://dx.doi.org/10.1186/s11671-020-03397-8 | DOI Listing |
Poult Sci
December 2024
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:
This study investigated the optimal tannic acid dosage and assessed tolerance levels in broiler chickens. In experiment 1, 525 broilers were randomly divided into 5 treatment groups, the control group (CON group) and groups TA1 to TA4, corresponding to treatments of 0.025, 0.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.
Janus MoSiGeN monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN monolayer and metal electrode contacts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India.
In the past decade, significant efforts have been made to develop efficient half-Heusler (HH) based thermoelectric (TE) materials. However, their practical applications remain limited due to various challenges occurring during the fabrication of TE devices, particularly the development of stable contacts with low interfacial resistance. In this study, we have made an effort to explore a stable contact material with low interfacial resistance for an n-type TiCoSb-based TE material, specifically TiNbCoSbBi as a proof of concept, using a straightforward facile synthesis route of spark plasma sintering.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.
The chemical reactivity between benzene and the "naked" acyclic carbene-like (G13X) species, having two bulky N-heterocyclic boryloxy ligands at the Group 13 center, was theoretically assessed using density functional theory computations. Our theoretical studies show that (BX) preferentially undergoes C-H bond insertion with benzene, both kinetically and thermodynamically, whereas the (AlX) analogue favors a reversible [4 + 1] cycloaddition. Conversely, the heavier carbene analogues ((GaX), (InX), and (TlX)) are not expected to engage in a reaction with benzene.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.
Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!