Mammalian olfactory receptor neurons in the nasal cavity are stimulated by odorants carried by the inhaled air and their activation is therefore tied to and driven by the breathing or sniffing frequency. Sniffing frequency can be deliberately modulated to alter how odorants stimulate olfactory receptor neurons, giving the animal control over the frequency of odorant exposure to potentially aid odorant detection and discrimination. We monitored sniffing behaviors and odorant discrimination ability of freely-moving mice while they sampled either decreasing concentrations of target odorants or sampled a fixed target odorant concentration in the presence of a background of increasing odorant concentrations, using a Go-NoGo behavioral paradigm. This allowed us to ask how mice alter their odorant sampling duration and sampling (sniffing) frequency depending on the demands of the task and its difficulty. Mice showed an anticipatory increase in sniffing rate prior to odorant exposure and chose to sample for longer durations when exposed to odorants as compared to the solvent control odorant. Similarly, mice also took more odorant sampling sniffs when exposed to target odorants compared to the solvent control odorant. In general, odorant sampling strategies became more similar the more difficult the task was, e.g. the lower the target odorant concentration or the lower the target odorant contrast relative to the background odorant, suggesting that sniffing patterns are not preset, but are dynamically modulated by the particular task and its difficulty.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428156 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237756 | PLOS |
J Chem Ecol
January 2025
Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
In modern agriculture, control of insect pests is achieved by using insecticides that can also have lethal and sublethal effects on beneficial non-target organisms. Here, we investigate acute toxicity and sublethal effects of four insecticides on the males' sex pheromone response and the female host finding ability of the Drosophila parasitoid Leptopilina heterotoma. The nicotinic acetylcholine receptor antagonists acetamiprid, flupyradifurone and sulfoxaflor, as well as the acetylcholinesterase inhibitor dimethoate were applied topically as acetone solutions.
View Article and Find Full Text PDFeNeuro
January 2025
University of Kassel, 34132 Kassel, Germany.
Evolutionary pressures adapted insect chemosensation to the respective insect's physiological needs and tasks in their ecological niches. Solitary nocturnal moths rely on their acute olfactory sense to find mates at night. Pheromones are detected with maximized sensitivity and high temporal resolution through mechanisms that are mostly unknown.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2025
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Chemical signals are pivotal in establishing tritrophic interactions among host plants, herbivorous insects, and natural enemies. Previous studies have shown that evolutionarily conserved MaltOBPs in Monochamus alternatus and DhelOBPs in Dastarcus helophoroides contribute to the establishment of pine -pest - natural enemy tritrophic interactions by recognizing the same volatile emitted by the host during crucial developmental stages. We hypothesized that the transcriptional regulatory mechanisms of evolutionarily conserved OBPs respectively from pests and enemies are similar.
View Article and Find Full Text PDFFront Nutr
January 2025
College of Tea and Food Science, Xinyang Normal University, Xinyang, China.
Tea flower, with characteristic flavor formed during blooming, are a significant tea resource. However, studies on the volatile compounds of tea flower and their aroma characteristics during flowering are scarce. In this study, the odor characteristics of tea flower during blooming were comprehensively investigated by GC-MS, PCA, ACI determination and sensory evaluation.
View Article and Find Full Text PDFToxicol Rep
June 2025
School of Pharmacy, College of Health Sciences, University of Nizwa, Oman.
Lemongrass (Poaceae) is one of the aromatic plants with strong odors. Traditionally, lemon grass oil has been used for the treatment of many diseases such as gastrointestinal cramps, high blood pressure, high body temperatures, and fatigue, and is also considered an antibacterial and anti-diarrheal agent. Therefore, this study aims to investigate volatile active constituents and a few important biological activities of the volatile oil of lemongrass (Cymbopogon citratus) grown in Oman.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!