Mask or no mask for COVID-19: A public health and market study.

PLoS One

Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States of America.

Published: August 2020

Efficient strategies to contain the coronavirus disease 2019 (COVID-19) pandemic are peremptory to relieve the negatively impacted public health and global economy, with the full scope yet to unfold. In the absence of highly effective drugs, vaccines, and abundant medical resources, many measures are used to manage the infection rate and avoid exhausting limited hospital resources. Wearing masks is among the non-pharmaceutical intervention (NPI) measures that could be effectively implemented at a minimum cost and without dramatically disrupting social practices. The mask-wearing guidelines vary significantly across countries. Regardless of the debates in the medical community and the global mask production shortage, more countries and regions are moving forward with recommendations or mandates to wear masks in public. Our study combines mathematical modeling and existing scientific evidence to evaluate the potential impact of the utilization of normal medical masks in public to combat the COVID-19 pandemic. We consider three key factors that contribute to the effectiveness of wearing a quality mask in reducing the transmission risk, including the mask aerosol reduction rate, mask population coverage, and mask availability. We first simulate the impact of these three factors on the virus reproduction number and infection attack rate in a general population. Using the intervened viral transmission route by wearing a mask, we further model the impact of mask-wearing on the epidemic curve with increasing mask awareness and availability. Our study indicates that wearing a face mask can be effectively combined with social distancing to flatten the epidemic curve. Wearing a mask presents a rational way to implement as an NPI to combat COVID-19. We recognize our study provides a projection based only on currently available data and estimates potential probabilities. As such, our model warrants further validation studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428176PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237691PLOS

Publication Analysis

Top Keywords

mask
10
public health
8
covid-19 pandemic
8
masks public
8
combat covid-19
8
wearing mask
8
epidemic curve
8
wearing
5
mask mask
4
covid-19
4

Similar Publications

Most methods currently used to infer the "demographic history of species" interpret this expression as a history of population size changes. The detection, quantification, and dating of demographic changes often rely on the assumption that population structure can be neglected. However, most vertebrates are typically organized in populations subdivided into social groups that are usually ignored in the interpretation of genetic data.

View Article and Find Full Text PDF

Background: The escalating global prevalence of food allergies has intensified the need for hypoallergenic food products. Transglutaminase (TGase)-mediated crosslinking has garnered significant attention for its potential to reduce the allergenicity of food proteins. This study aimed to investigate the effects of TGase crosslinking on the potential allergenicity and conformational changes in a dual-protein system composed of β-lactoglobulin (β-LG) and soy protein isolate (SPI) at varying mass ratios (10:0, 7:3, 5:5, 3:7 and 0:10 (w/w)).

View Article and Find Full Text PDF

Single-shot 3D optical microscopy that can capture high-resolution information over a large volume has broad applications in biology. Existing 3D imaging methods using point-spread-function (PSF) engineering often have limited depth of field (DOF) or require custom and often complex design of phase masks. We propose a new, to the best of our knowledge, PSF approach that is easy to implement and offers a large DOF.

View Article and Find Full Text PDF

Purpose: We aim to perform radiogenomic profiling of breast cancer tumors using dynamic contrast magnetic resonance imaging (MRI) for the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) genes.

Methods: The dataset used in the current study consists of imaging data of 922 biopsy-confirmed invasive breast cancer patients with ER, PR, and HER2 gene mutation status. Breast MR images, including a T1-weighted pre-contrast sequence and three post-contrast sequences, were enrolled for analysis.

View Article and Find Full Text PDF

Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates.

Nat Struct Mol Biol

January 2025

Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.

The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organization and dynamics of chromatin compacted by gene-repressing factors are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!