High-flow low-expansion backfill materials have been developed to improve difficult slurry pipeline transport and poor roof-contact effect of many filling materials. The fly ash content was fixed at 80%, with 8.5% - 9.5% mineral powder content, 8.5% - 9.5% lime, 2% - 3% desulfurized gypsum, 0.9% - 1.2% sodium carbonate, and 0.01% - 0.02% aluminum powder content. The prepared backfill material processed good fluidity, with the expansion rate of the hardened material reaching 2% - 3%, and compressive strength on 90 d reaching 4 MPa-5.5 MPa. SEM observations indicated that as the aluminum content increased, ettringite on bubble walls transformed from a fine-needle to needle-rod shape. Secondly, the hydration products of the system were mainly hydrated calcium silicate gel and ettringite, which interconnected and promoted the formation of the structure. The backfill material has extensive sources of raw materials, low cost, simple filling process, and good filling effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428165 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236718 | PLOS |
Sci Rep
January 2025
School of City and Architecture Engineering, Zaozhuang University, Zaozhuang, 277160, Shandong, China.
To study the enhancement effect of carbon nanotubes (CNTs) on the splitting tensile properties of foamed concrete backfill in which cement and fly ash were used as the cementitious materials and natural sand was used as the aggregate, specimens of CNT-modified foamed concrete backfill were prepared. Brazilian splitting tests were used to investigate the splitting tensile strength of the CNT-modified foamed concrete backfill, and the digital speckle correlation method was used to analyze the stress field characteristics and crack expansion law of the specimens during splitting tensile testing. The stress-strain characteristics and energy dissipation laws of the backfill were studied at various static loading rates, and a relationship between the splitting tensile strength, ultimate strain, and loading rate was established.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil and Transportation Engineering, Hebei University of Technology, Xiping Road 5340, Tianjin 300401, China.
Waste slurry, a major by-product of urban construction, is produced in rapidly increasing volumes each year. Dehydrated waste slurry has potential as a roadbed material; however, its performance in freeze-thaw environments, which can induce frost heave and thaw settlement, and the mechanism of the influence of freeze-thaw cycles on its macro and micro properties are still unclear and need thorough investigation. This study explores the macroscopic and microscopic properties of waste slurry subjected to freeze-thaw cycles.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland.
The paper presents the results of experimental and numerical tests on barrel vaults with backfill material. The thickness, internal span, and rise of the vaults were 125 mm, 2000 mm, and 730 mm, respectively. In experimental studies, vaults with backfill of expanded clay aggregate or granite aggregate were tested.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Energy School, Xi'an University of Science and Technology, Xi'an 710054, China.
Fly ash-cement composite backfill slurry, prepared by partially replacing cement with fly ash, has been demonstrated to effectively reduce the mine backfill costs and carbon emissions associated with cement production. However, the use of fly ash often results in insufficient early and medium-term strength of the backfill material. To address the demand for high medium-term strength in backfill materials under continuous mining and backfilling conditions, this study developed a silica fume-fly ash-cement composite backfill slurry.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Mining Engineering, Faculty of Engineering, Hadimkoy Campus, Istanbul University - Cerrahpasa, 34500, Istanbul, Turkiye.
One of the challenges encountered in mining is acid mine drainage (AMD) in sulphurous ores in response to rainfall and groundwater. CPB one of the most prevalent waste management systems addresses this issue today. Nevertheless, in the long term, the concretion in CPB may become ineffective because of external factors, such as groundwater and rainfall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!