Introducing a dielectric inclusion inside an epsilon-near-zero (ENZ) host has been shown to dramatically affect the effective permeability of the host for a TM-polarized incident wave, a concept coined as photonic doping [Science355, 1058 (2017)SCIEAS0036-807510.1126/science.aal2672]. Here, we theoretically study the prospect of doping the ENZ host with infinitesimally thin perfect electric conductor (PEC) inclusions, which we call "zero-area" PEC dopants. First, we theoretically demonstrate that zero-area PEC dopants enable the design of soft surfaces with an arbitrary cross-sectional geometry. Second, we illustrate the possibility of engineering the PEC dopants with the goal of transforming the electric field distribution inside the ENZ while maintaining a spatially invariant magnetic field. We exploit this property to enhance the effective nonlinearity of the ENZ host.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.400438 | DOI Listing |
Phys Rev Lett
December 2024
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.
View Article and Find Full Text PDFbioRxiv
December 2024
Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
enterica spp. rely on translocation of effector proteins through the SPI-2 encoded type III secretion system (T3SS) to achieve pathogenesis. More than 30 effectors contribute to manipulation of host cells through diverse mechanisms, but interdependency or redundancy between effectors complicates the discovery of effector phenotypes using single mutant strains.
View Article and Find Full Text PDFCell Rep
March 2024
Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland. Electronic address:
Salmonella Typhimurium (S.Tm) utilizes the chemotaxis receptor Tsr to exploit gut inflammation. However, the characteristics of this exploitation and the mechanism(s) employed by the pathogen to circumvent antimicrobial effects of inflammation are poorly defined.
View Article and Find Full Text PDFOptical vortices have myriad applications in photonics. Very recently, promising concepts of spatiotemporal optical vortex (STOV) pulses based on the phase helicity in the space-time coordinates have attracted much attention owing to their donut shape. We elaborate on the molding of STOV under the transmission of femtosecond pulses through a thin epsilon-near-zero (ENZ) metamaterial slab based on a silver nanorod array in a dielectric host.
View Article and Find Full Text PDFLight Sci Appl
July 2022
Department of Electronic Engineering, Tsinghua University, 100084, Beijing, China.
Epsilon-near-zero (ENZ) media are opening up exciting opportunities to observe exotic wave phenomena. In this work, we demonstrate that the ENZ medium comprising multiple dielectric photonic dopants would yield a comb-like dispersion of the effective permeability, with each magnetic resonance dominated by one specific dopant. Furthermore, at multiple frequencies of interest, the resonant supercouplings appearing or not can be controlled discretely via whether corresponding dopants are assigned or not.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!