No general approach is available yet to measure directly the ratio between chromatic dispersion and the nonlinear coefficient, and hence the soliton number for a given optical pulse, in an arbitrary guiding medium. Here we solve this problem using continuum generation. We experimentally demonstrate our method in polarization-maintaining and single-mode fibers with positive and negative chromatic dispersion. Our technique also offers new opportunities to determine the chromatic dispersion of guiding media over a broad spectral range while pumping at a fixed wavelength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.399382 | DOI Listing |
Polarization and wavelength multiplexed metalenses address the bulkiness of traditional imaging systems. However, despite progress with numerical simulations and parameter scanning, the engineering complexity of classical methods highlights the urgent need for efficient deep learning approaches. This paper introduces a deep learning-driven inverse design model for polarization-multiplexed metalenses, employing propagation phase theory alongside spectral transfer learning to address chromatic dispersion challenges.
View Article and Find Full Text PDFIn this Letter, a complex-valued double-sideband 16QAM (CV-DSB-16QAM) signaling scheme is proposed and experimentally demonstrated in a 100-Gb/s intensity modulation/direct detection (IM/DD) interconnection system. Unlike the conventional real-valued double-sideband (DSB) quadrature amplitude modulation (QAM) of relatively lower spectral efficiency (SE) and single-sideband (SSB) QAM relying on sharp-edged optical filtering, the CV-DSB-16QAM signal is generated by combining two independent sideband modulated QPSK signals using a single intensity modulator with an optical filtering-free profile, which also saves one photodiode and one analog-to-digital-converter compared with the twin-SSB scheme. Compared to typical pulse amplitude modulation or SSB schemes, the proposed approach offers a compelling alternative for complex-valued DD systems' evolution, particularly in scenarios with high SE demands and controllable chromatic dispersion.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
S.RI.Tech, Viale Del Lavoro 42A, 35010 Vigonza, Italy.
Microresonator frequency comb-based high-speed data transmission provides a pathway towards augmented data capacity without increasing the number of laser sources. Their use with intensity-modulated direct detection modulation (IMDD) formats is especially pertinent in data center communications where minimizing cost, latency and complexity is paramount. This however implies that the same extent of digital signal processing techniques commonly used in coherent detection for the management of fiber impairments including chromatic dispersion are not available.
View Article and Find Full Text PDFHigh-capacity optical interconnects with short reach are hugely demanded driven by the exponential growth of data traffic. In this work, four-channel wavelength division multiplexing (WDM) uplink/downlink twin single-sideband (twin-SSB) signals are implemented by a wavelength selective switch (WSS) at once, which simplifies the structure of multi-channel SSB transmitters and reduces the cost of high-capacity optical interconnect. Compared to a double sideband scheme, it has been experimentally proven that the performance of SSB transmission over standard single-mode fiber (SSMF) at C-band with an ultra-high baud rate has been greatly improved, which has the ability to effectively overcome the power fading induced by chromatic dispersion in an intensity modulation and direct detection (IM/DD) system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!