Pain remains a key therapeutic area with intensive efforts directed toward finding effective and safer analgesics in light of the ongoing opioid crisis. Amongst the neurotransmitter systems involved in pain perception and modulation, the mu-opioid receptor (MOR), a G protein-coupled receptor, represents one of the most important targets for achieving effective pain relief. Most clinically used opioid analgesics are agonists to the MOR, but they can also cause severe side effects. Medicinal plants represent important sources of new drug candidates, with morphine and its semisynthetic analogues as well-known examples as analgesic drugs. In this study, combining in silico (pharmacophore-based virtual screening and docking) and pharmacological (in vitro binding and functional assays, and behavioral tests) approaches, we report on the discovery of two naturally occurring plant alkaloids, corydine and corydaline, as new MOR agonists that produce antinociceptive effects in mice after subcutaneous administration via a MOR-dependent mechanism. Furthermore, corydine and corydaline were identified as G protein-biased agonists to the MOR without inducing β-arrestin2 recruitment upon receptor activation. Thus, these new scaffolds represent valuable starting points for future chemical optimization towards the development of novel opioid analgesics, which may exhibit improved therapeutic profiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427800 | PMC |
http://dx.doi.org/10.1038/s41598-020-70493-1 | DOI Listing |
Molecules
September 2022
Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
Data on alkaloid interactions with the physiologically important transition metals, iron and copper, are mostly lacking in the literature. However, these interactions can have important consequences in the treatment of both Alzheimer's disease and cancer. As isoquinoline alkaloids include galanthamine, an approved drug for Alzheimer's disease, as well as some potentially useful compounds with cytostatic potential, 28 members from this category of alkaloids were selected for a complex screening of interactions with iron and copper at four pathophysiologically relevant pH and in non-buffered conditions (dimethyl sulfoxide) by spectrophotometric methods in vitro.
View Article and Find Full Text PDFSci Rep
August 2020
Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
Pain remains a key therapeutic area with intensive efforts directed toward finding effective and safer analgesics in light of the ongoing opioid crisis. Amongst the neurotransmitter systems involved in pain perception and modulation, the mu-opioid receptor (MOR), a G protein-coupled receptor, represents one of the most important targets for achieving effective pain relief. Most clinically used opioid analgesics are agonists to the MOR, but they can also cause severe side effects.
View Article and Find Full Text PDFJ Ethnopharmacol
August 2007
Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, Copenhagen O 2100, Denmark.
In the course of screening plants used in Danish folk medicine as memory enhancers, a crude methanolic extract of tubers from Corydalis cava showed significant acetylcholinesterase inhibitory activity in a dose-dependent manner. Activity guided fractionation of the methanolic extract resulted in the isolation of three alkaloids, bulbocapnine (1), corydaline (2) and corydine (3) as active constituents. Bulbocapnine inhibited acetylcholinesterase as well as butyrylcholinesterase in a dose-dependent manner with IC(50) values of 40+/-2 microM and 83+/-3 microM, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!