Single cell electron collectors for highly efficient wiring-up electronic abiotic/biotic interfaces.

Nat Commun

Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.

Published: August 2020

By electronically wiring-up living cells with abiotic conductive surfaces, bioelectrochemical systems (BES) harvest energy and synthesize electric-/solar-chemicals with unmatched thermodynamic efficiency. However, the establishment of an efficient electronic interface between living cells and abiotic surfaces is hindered due to the requirement of extremely close contact and high interfacial area, which is quite challenging for cell and material engineering. Herein, we propose a new concept of a single cell electron collector, which is in-situ built with an interconnected intact conductive layer on and cross the individual cell membrane. The single cell electron collector forms intimate contact with the cellular electron transfer machinery and maximizes the interfacial area, achieving record-high interfacial electron transfer efficiency and BES performance. Thus, this single cell electron collector provides a superior tool to wire living cells with abiotic surfaces at the single-cell level and adds new dimensions for abiotic/biotic interface engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429851PMC
http://dx.doi.org/10.1038/s41467-020-17897-9DOI Listing

Publication Analysis

Top Keywords

single cell
16
cell electron
16
living cells
12
cells abiotic
12
electron collector
12
abiotic surfaces
8
interfacial area
8
electron transfer
8
electron
6
cell
5

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

Purpose: Immune checkpoint inhibitors (ICIs) are now first-line therapy for most patients with recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC), and cetuximab is most often used as subsequent therapy. However, data describing cetuximab efficacy in the post-ICI setting are limited.

Methods: We performed a single-institution retrospective analysis of patients with R/M HNSCC treated with cetuximab, either as monotherapy or in combination with chemotherapy, after receiving an ICI.

View Article and Find Full Text PDF

Surface-Sensitive Waveguide Imaging for In Situ Analysis of Membrane Protein Binding Kinetics.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

A novel ternary boride, NiPtB ( = 0.5), was obtained by argon-arc melting of the elements followed by annealing at 750 °C. It exhibits a new structure type with the space group ( = 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!