XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury.

Cell Death Dis

Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, 430030, Wuhan, Hubei, China.

Published: August 2020

Regulated necrosis has been reported to exert an important role in the pathogenesis of various diseases, including renal ischemia-reperfusion (I/R) injury. Damage to renal tubular epithelial cells and subsequent cell death initiate the progression of acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). We found that ferroptosis appeared in tubular epithelial cells (TECs) of various human kidney diseases and the upregulation of tubular proferroptotic gene ACSL4 was correlated with renal function in patients with acute kidney tubular injury. XJB-5-131, which showed high affinity for TECs, attenuated I/R-induced renal injury and inflammation in mice by specifically inhibiting ferroptosis rather than necroptosis and pyroptosis. Single-cell RNA sequencing (scRNA-seq) indicated that ferroptosis-related genes were mainly expressed in tubular epithelial cells after I/R injury, while few necroptosis- and pyroptosis-associated genes were identified to express in this cluster of cell. Taken together, ferroptosis plays an important role in renal tubular injury and the inhibition of ferroptosis by XJB-5-131 is a promising therapeutic strategy for protection against renal tubular cell injury in kidney diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429848PMC
http://dx.doi.org/10.1038/s41419-020-02871-6DOI Listing

Publication Analysis

Top Keywords

tubular epithelial
16
epithelial cells
16
renal tubular
12
tubular
8
injury
8
i/r injury
8
acute kidney
8
kidney diseases
8
tubular injury
8
renal
6

Similar Publications

Low molecular weight fucoidan (LMWF) has been proved to be more potent than its prototype, many degradation methods have been used to prepare LMWF. This study is conducted to further explore the biological activities of LMWF prepared by ultrasound based on anticoagulation, antioxidation, and inhibition of urate induced pyroptosis and reabsorption transporters overexpression in human renal tubular epithelial cells. Data revealed that ultrasound successfully degraded fucoidan to be LMWF, the product treated for no more than 2.

View Article and Find Full Text PDF

Xanthohumol attenuates TXNIP-mediated renal tubular injury in vitro and in vivo diabetic models.

J Nat Med

January 2025

Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China.

Thioredoxin-interacting protein (TXNIP), as a pivotal protein in the cellular stress response, plays a significant role in the progression of diabetic nephropathy (DN). Consequently, therapeutic strategies aimed at targeting TXNIP may offer novel interventions for patients with DN. Our study is to explore the therapeutic potential of targeting TXNIP in mitigating renal tubular injury induced by hyperglycemia.

View Article and Find Full Text PDF

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

Dysregulation of ubiquitination modification in renal cell carcinoma.

Front Genet

December 2024

Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, China.

Renal cell carcinoma (RCC) is a malignant tumor of the renal tubular epithelial cells with a relatively high incidence rate worldwide. A large number of studies have indicated that dysregulation of the ubiquitination, including ubiquitination and dysregulation, is associated with the occurrence and development of RCC. This review focuses on several abnormal signaling pathways caused by E3 ligases and deubiquitinases.

View Article and Find Full Text PDF

ATGL regulates renal fibrosis by reprogramming lipid metabolism during the transition from AKI to CKD.

Mol Ther

January 2025

Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China. Electronic address:

Acute kidney injury (AKI) can progress to chronic kidney disease (CKD) and subsequently to renal fibrosis. Poor repair of renal tubular epithelial cells (TECs) after injury is the main cause of renal fibrosis. Studies have shown that restoring damaged fatty acid β-oxidation (FAO) can reduce renal fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!