Regulated necrosis has been reported to exert an important role in the pathogenesis of various diseases, including renal ischemia-reperfusion (I/R) injury. Damage to renal tubular epithelial cells and subsequent cell death initiate the progression of acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). We found that ferroptosis appeared in tubular epithelial cells (TECs) of various human kidney diseases and the upregulation of tubular proferroptotic gene ACSL4 was correlated with renal function in patients with acute kidney tubular injury. XJB-5-131, which showed high affinity for TECs, attenuated I/R-induced renal injury and inflammation in mice by specifically inhibiting ferroptosis rather than necroptosis and pyroptosis. Single-cell RNA sequencing (scRNA-seq) indicated that ferroptosis-related genes were mainly expressed in tubular epithelial cells after I/R injury, while few necroptosis- and pyroptosis-associated genes were identified to express in this cluster of cell. Taken together, ferroptosis plays an important role in renal tubular injury and the inhibition of ferroptosis by XJB-5-131 is a promising therapeutic strategy for protection against renal tubular cell injury in kidney diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429848 | PMC |
http://dx.doi.org/10.1038/s41419-020-02871-6 | DOI Listing |
Int J Biol Macromol
January 2025
College of Chemistry and Environmental Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
Low molecular weight fucoidan (LMWF) has been proved to be more potent than its prototype, many degradation methods have been used to prepare LMWF. This study is conducted to further explore the biological activities of LMWF prepared by ultrasound based on anticoagulation, antioxidation, and inhibition of urate induced pyroptosis and reabsorption transporters overexpression in human renal tubular epithelial cells. Data revealed that ultrasound successfully degraded fucoidan to be LMWF, the product treated for no more than 2.
View Article and Find Full Text PDFJ Nat Med
January 2025
Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China.
Thioredoxin-interacting protein (TXNIP), as a pivotal protein in the cellular stress response, plays a significant role in the progression of diabetic nephropathy (DN). Consequently, therapeutic strategies aimed at targeting TXNIP may offer novel interventions for patients with DN. Our study is to explore the therapeutic potential of targeting TXNIP in mitigating renal tubular injury induced by hyperglycemia.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.
View Article and Find Full Text PDFFront Genet
December 2024
Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, China.
Renal cell carcinoma (RCC) is a malignant tumor of the renal tubular epithelial cells with a relatively high incidence rate worldwide. A large number of studies have indicated that dysregulation of the ubiquitination, including ubiquitination and dysregulation, is associated with the occurrence and development of RCC. This review focuses on several abnormal signaling pathways caused by E3 ligases and deubiquitinases.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China. Electronic address:
Acute kidney injury (AKI) can progress to chronic kidney disease (CKD) and subsequently to renal fibrosis. Poor repair of renal tubular epithelial cells (TECs) after injury is the main cause of renal fibrosis. Studies have shown that restoring damaged fatty acid β-oxidation (FAO) can reduce renal fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!