Electrochemical Detection and Capillary Electrophoresis: Comparative Studies for Alkaline Phosphatase (ALP) Release from Living Cells.

Biosensors (Basel)

Sensing & Separation Group, School of Chemistry and Life Science Interface, University College Cork, Tyndall National Institute, T12R5CP Cork, Ireland.

Published: August 2020

Alkaline phosphatase (ALP) is one of the main biomarkers that is clinically detected in bone and liver disorders using optical assays. The electrochemical principle is important because point-of-care testing is increasing dramatically and absorbance techniques hardly compete with the medical revolution that is occurring. The detection of ALP using electrochemical detection is contributing to the integration systems field, and hence enhancing the detection of biological targets for pharmaceutical research and design systems. Moreover, in vitro electrochemical measurements use cost effective materials and simple techniques. Graphite screen-printed electrodes and linear sweep voltammetry were used to optimize the electrochemistry of the enzymatic product p-aminophenol using the enzyme kinetic assay. ALP release from embryonic and cancer cells was determined from adhesion cell culture. Additionally, capillary electrophoresis and colorimetric methods were applied for comparison assays. The resulting assays showed a dynamic range of ALP ranging from 1.5 to 1500 U/L, and limit of detection of 0.043 U/L. This was achieved by using 70 μL of the sample and an incubation time of 10 min at an optimal substrate concentration of 9.6 mM of p-aminophenol phosphate. A significant difference ( < 0.05) was measured between the absorbance assays. This paper demonstrates the advantages of the electrochemical assay for ALP release from cells, which is in line with recent trends in gene expression systems using microelectrode array technologies and devices for monitoring electrophysiological activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459635PMC
http://dx.doi.org/10.3390/bios10080095DOI Listing

Publication Analysis

Top Keywords

alp release
12
electrochemical detection
8
capillary electrophoresis
8
alkaline phosphatase
8
phosphatase alp
8
assay alp
8
alp
6
electrochemical
5
detection capillary
4
electrophoresis comparative
4

Similar Publications

Introduction: Elevated glucose can have a detrimental effect on the function and healing process of periodontal cells in inflammatory conditions. Hesperidin (HPN), a bioflavonoid found abundantly in citrus fruits, has numerous biological benefits, including regenerative and anti-inflammatory properties. The current in-vitro study aimed to assess the impact of HPN on the proliferation, wound healing, and functionality of periodontal cells in optimal and elevated glucose conditions.

View Article and Find Full Text PDF

ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes.

Arterioscler Thromb Vasc Biol

January 2025

British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).

Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.

Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.

View Article and Find Full Text PDF

(1) Background: Periodontal disease, a progressive inflammatory condition, disrupts the oral microbiome and releases inflammatory cytokines, leading to systemic issues, including cognitive decline. This study investigates the association between severe periodontitis and cognitive decline, exploring the role of alkaline phosphatase (ALP), an enzyme linked to systemic inflammation, as an effect modifier. (2) Methods: We analyzed cross-sectional data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES).

View Article and Find Full Text PDF

A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking. The first generation of bioinks was established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability.

View Article and Find Full Text PDF

After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!